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Abstract

We give query complexity lower bounds for convex optimization and the related feasibility prob-

lem. We show that quadratic memory is necessary to achieve the optimal oracle complexity for first-

order convex optimization. In particular, this shows that center-of-mass cutting-planes algorithms in

dimension d which use Õ(d2) memory and Õ(d) queries are Pareto-optimal for both convex opti-

mization and the feasibility problem, up to logarithmic factors. Precisely, building upon techniques

introduced in [1], we prove that to minimize 1-Lipschitz convex functions over the unit ball to 1/d4

accuracy, any deterministic first-order algorithms using at most d2−δ bits of memory must make

Ω̃(d1+δ/3) queries, for any δ ∈ [0, 1]. For the feasibility problem, in which an algorithm only has

access to a separation oracle, we show a stronger trade-off: for at most d2−δ memory, the number of

queries required is Ω̃(d1+δ). This resolves a COLT 2019 open problem of Woodworth and Srebro.

Keywords. Convex optimization, feasibility problem, first-order methods, cutting-planes, center-of-

mass, memory lower bounds, query complexity

1 Introduction

We consider the canonical problem of first-order convex optimization in which one aims to minimize a

convex function f : Rd → R with access to an oracle that for any query x returns (f(x),∇f(x)) the

value of the function and a subgradient of f at x. Arguably, this is one of the most fundamental problems

in optimization, mathematical programming and machine learning.

A classical question is how many oracle queries are required to guarantee finding an ǫ-approximate

minimizer for any 1-Lipschitz convex functions f : Rd → R over the unit ball. We denote byBd(x, r) =
{x′ ∈ R

d : ‖x − x′‖2 ≤ ǫ} the ball centered in x of radius r. There exist methods that given first-

order oracle access only need O(d log 1/ǫ) queries and this query complexity is worst-case optimal [2]

when ǫ ≪ 1/
√
d. Known methods achieving the optimal O(d log 1/ǫ) query complexity fall in the

broad class of cutting plane methods, that build upon the well-known ellipsoid method [3, 4] which uses

O(d2 log 1/ǫ) queries. These include the inscribed ellipsoid [5, 6], volumetric center or Vaidya’s method

[7, 8], approximate center-of-mass via sampling techniques [9, 10] and recent improvements [11, 12].

Unfortunately, all these methods suffer from at least Ω(d3 log 1/ǫ) time complexity and further require

storing all subgradients, or at least an ellipsoid in R
d, therefore at least Ω(d2 log 1/ǫ) bits of memory.

These limitations are prohibitive for large-scale optimization, hence cutting plane methods are viewed

as rather impractical and less frequently used for high-dimensional applications. On the other hand, the

simplest, perhaps most commonly used and practical gradient descent requires O(1/ǫ2) queries, which

is not optimal for ǫ≪ 1/
√
d, but only needs O(d) time per query and O(d log 1/ǫ) memory.
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A natural question is whether one can preserve the optimal query lower bounds from cutting-planes

methods with simpler methods, for instance, inspired by gradient descent techniques. Such hope is

largely motivated by the fact that in many different theoretical settings, cutting plane methods have

achieved state-of-the-art runtimes including semidefinite programming [11, 13], submodular optimiza-

tion [11, 14–16] or equilibrium computation [17, 18]. Towards this goal, [19] first posed this question in

terms of query complexity / memory trade-off: given a certain number of bits of memory, which query

complexity is achievable? While cutting planes methods require Ω(d2 log 1/ǫ) memory, gradient de-

scent only requires storing one vector and as a result, uses O(d log 1/ǫ) memory, which is information-

theoretically optimal [19]1. Understanding this trade-off could pave the way for the design of more

efficient methods in convex optimization.

The first result in this direction was provided in [1], where they showed that it is impossible to be both

optimal in query complexity and in memory. Specifically, they proved that any potentially randomized

algorithm that uses at most d1.25−δ memory must make at least Ω̃(d1+4/3δ) queries. This implies that

a super-linear amount of memory d1.25 is required to achieve the optimal rate of convergence (that is

achieved by algorithms using more than quadratic memory). However, this leaves open the fundamental

question of whether one can improve over the memory of cutting-plane methods while keeping optimal

query complexity.

Question (COLT 2019 [19]). Is it possible for a first-order algorithm that uses at mostO(d2−δ) bits of

memory to achieve query complexity Õ(dpolylog 1/ǫ) when d = Ω(logc 1/ǫ) but d = o(1/ǫc) for all

c > 0?

In this paper, building upon the techniques introduced in [1], we provide a negative answer to this

question: quadratic memory is necessary to achieve the optimal query complexity with deterministic al-

gorithms. As a result, cutting plane methods including the standard center-of-mass algorithm are Pareto-

optimal up to logarithmic factors within the query complexity / memory trade-off. Our main result for

convex optimization is the following.

Theorem 1. For ǫ = 1/d4 and any δ ∈ [0, 1], a deterministic first-order algorithm guaranteed to

minimize 1-Lipschitz convex functions over the unit ball with ǫ accuracy uses at least d2−δ bits or makes

Ω̃(d1+δ/3) queries.

A key component of cutting plane methods is that they merely rely on the subgradient information at

each query to restrict the search space. As a result, these can be used to solve the larger class of feasibility

problems that are essential in mathematical programming and optimization. In a feasibility problem, one

aims to find an ǫ-approximation of an unknown vector x⋆, and has access to a separation oracle. For any

query x, the separation oracle either returns a separating hyperplane g from x to Bd(x
⋆, ǫ)—such that

〈g,x− z〉 > 0 for any z ∈ Bd(x
⋆, ǫ)—or signals that ‖x− x⋆‖ ≤ ǫ. This class of problems is broader

than convex optimization since the negative subgradient always provides a separating hyperplane from

a suboptimal query to the optimal set. Hence, feasibility and convex minimization problem are closely

related and it is often the case that obtaining query lower bounds for the feasibility problem simplifies the

analysis while still providing key insights for the more restrictive convex optimization problem [2, 20].

As a result, a similar fundamental question is to understand the query complexity / memory trade-off

for the feasibility problem. As noted above, any lower bound for convex optimization yields the same

lower bound for the feasibility problem. Here, we can significantly improve over the previous trade-off.

1Ω(d log 1/ǫ) bits of memory are already required just to represent the answer to the optimization problem.
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Theorem 2. For ǫ = 1/(48d2
√
d) and any δ ∈ [0, 1], a deterministic algorithm guaranteed to solve the

feasibility problem over the unit ball with ǫ accuracy uses at least d2−δ bits of memory or makes at least

Ω̃(d1+δ) queries.
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Figure 1: Trade-offs between available memory and first-order oracle complexity for minimizing 1-

Lipschitz convex functions over the unit ball (adapted from [1, 19]). The dashed pink “L” (resp. green

inverted ”L”) shaped region corresponds to historical information-theoretic lower bounds (resp. upper

bounds) on the memory and query-complexity. The solid pink region corresponds to the recent lower

bound trade-off from [1], which holds for randomized algorithms. In our work, we show that the solid

red region is not achievable for any deterministic algorithms. For the feasibility problem, we also show

that the dashed red region is not achievable either for any deterministic algorithms.

1.1 Literature review

Recently, there has been a series of studies exploring the trade-offs between sample complexity and mem-

ory constraints for learning problems, such as linear regression [21, 22], principal component analysis

(PCA) [23], learning under the statistical query model [24] and other general learning problems [25–31].

For parity problems that meet certain spectral (mixing) requirements, [32] first proved by a com-

putation tree argument that an exponential number of random samples is needed if the memory is sub-

quadratic. Similar trade-offs have been obtained when the learning problem satisfies other types of prop-

erties [27–31]. It should be noted that all the above-mentioned results hold for learning problems over

finite fields, i.e. the concept classes are finite. For continuous problems, [22] was the first to apply [32]’s

framework and showed a sample-complexity lower bound for memory-constrained linear regression.

In contrast to learning with random samples, there is limited understanding of the memory-constrained

optimization and feasibility problem. [33] demonstrated that, in the absence of memory constraints, find-

ing an ǫ-approximate solution for Lipschitz convex functions requires Ω(d log 1/ǫ) queries, which can

be achieved by the center-of-mass method using O(d2 log2 1/ǫ) bits of memory. At the other extreme,

gradient descent needs Ω(1/ǫ2) queries but only O(d log 1/ǫ) bits of memory, the minimum memory

needed to represent a solution. These two extreme cases are represented by dashed pink “impossible
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region” and dashed green “achievable region” in Figure 1. Since then, [1] showed that there is a trade-off

between memory and query for convex optimization: it is impossible to be both optimal in query com-

plexity and memory. Their lower bound is represented by the solid pink “impossible region” in Figure 1.

In this paper, we significantly improve these results to match the quadratic upper bound of cutting plane

methods. Additionally, there has been recent progress in the study of query complexity for randomized

algorithms [34, 35].

On the algorithmic side, the afore-mentioned methods that achieve O(poly(d)) query complexity

[3–12] all require at least Ω(d2 log 1/ǫ) bits of memory. There is also significant literature on memory-

efficient optimization algorithms, such as the Limited-memory-BFGS [36, 37]. However, the conver-

gence behavior for even the original BFGS on non-smooth convex objectives is still a challenging, open

question [38].

Comparison with [1] Our proof techniques build upon those introduced in [1]. We follow the proof

strategy that they introduced to derive lower bounds for the memory/query complexity. Below, we de-

lineate which ideas and techniques are borrowed from [1] and which are the novel elements that we

introduce. Details on these proof elements are given in Section 2.1.

First, [1] define a class of difficult functions for convex optimization of the following form

max

{

‖Ax‖∞ − η0, η1
(

max
i≤N

v⊤
i x− iγ

)}

, (1)

where A ∼ U({±1}d/2×d) is a matrix with ±1 entries sampled uniformly, and vi ∼ U(d−1/2{±1}d)
are sampled independently, uniformly within the rescaled hypercube. To give intuition on this class, the

term ‖Ax‖∞ − η0 acts as barrier : in order to observe subgradients from the other term, one needs to

use queries x that are approximately within the nullspace of A. The second term maxi≤N v⊤
i x− iγ is

the “Nemirovski” function, which was used in previous works [39–41] to obtain lower bounds in parallel

convex optimization. At a high level, the limitation in the lower bounds from [1] comes from the fact

that one is limited in the number N of vectors v1, . . . ,vN that can be used in the Nemirovski function.

To resolve this issue, we introduce adaptivity within the choice of a modified Nemirovski function. At a

high level, we choose the vectors v1, . . . ,vN depending on the queries of the algorithm which allows to

fit in more terms. In turn, this allows to improve the lower bounds.

As a second step, [1] relate the optimization problem on the defined class of functions to an Orthogo-

nal Vector Game. In this game, the goal is to find vectors that are approximately orthogonal to a matrix A

with access to row queries of A. The argument is as follows: because of the barrier term ‖Ax‖∞ − η0,

optimizing the Nemirovski function requires exploring independent directions of the nullspace of A,

which is performed at informative queries. With our new class of functions, we can adapt this logic.

However, the adaptivity in the vectors vi provides information to the learner on A in addition to the

queried rows of A. We therefore need to modify the game by introducing an Orthogonal Vector Game

with Hints, where hints encapsulate this extra information.

For the last step, [1] give an information-theoretic argument to provide a query complexity lower

bound on the defined Orthogonal Vector Game. Following the same structure, we show that a similar

argument holds for our modified game. The main added difficulty resides in bounding the information

leakage from the hints, and we show that these provide no more information than the memory itself.

As a last remark, the lower bounds provided in [1] hold for randomized algorithms, while the adap-

tivity of our procedure only applies to deterministic algorithms.
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1.2 Outline of paper

Our main results for the trade-off between memory and query complexity for optimization and feasibility

problem have been presented in Section 1 (Theorem 1, 2). In Section 2, we formally define memory-

constrained algorithms and provide a brief overview of our proof techniques and contributions. Our

proofs for convex optimization are given in Section 3. We introduce the optimization procedure which

adaptively constructs a hard family of functions, provide a reduction from this hard family to an orthog-

onal vector game with hints, and show a memory-sample trade-off (Proposition 14) for the game, which

completes the proof of the Theorem 1. Last, in Section 4, we consider the feasibility problem and, with

a similar methodology, prove Theorem 2.

2 Formal setup and overview of techniques

Standard results in oracle complexity give the minimal number of queries for algorithms to solve a

given problem. However, this does not account for possible restrictions on the memory available to

the algorithm. In this paper, we are interested in the trade-off between memory and query complexity

for both convex optimization and the feasibility problem. Our results apply to a large class of memory-

constrained algorithms. We give below a general definition of the memory constraint for algorithms with

access to an oracle O : S → R taking as input a query q ∈ S and returning as response O(q) ∈ R.

Definition 3 (M -bit memory-constrained deterministic algorithm). LetO : S → R be an oracle. AnM -

bit memory-constrained deterministic algorithm is specified by a query function ψquery : {0, 1}M → S
and an update function ψupdate : {0, 1}M × S ×R → {0, 1}M . The algorithm starts with the memory

state Memory0 = 0M and iteratively makes queries to the oracle. At iteration t, it makes the query

qt = ψquery(Memoryt−1) to the oracle, receives the response rt = O(qt) then updates its memory

Memoryt = ψupdate(Memoryt−1, qt, rt).

The algorithm can stop making queries at any iteration and the last query is its final output. Notice

that the memory constraint applies only between each query but not for internal computations, i.e. the

computation of the update ψupdate and the query ψquery can potentially use unlimited memory. This is

a rather weak memory constraint on the algorithm; a fortiori, our negative results also apply to stronger

notions of memory-constrained algorithms. In Definition 3, we ask the query and update functions to be

time-invariant. In our context, this is without loss of generality: any M -bit algorithm using T queries

with time-dependent query and update functions [1, 19] can be turned into an (M + ⌈log T ⌉)-bit time-

invariant algorithm by storing the iteration number t as part of the memory. The query lower bounds we

provide are at most T ≤ poly(d). Hence, an additional log T = O(log d) bits to the memory size M ,

does not affect our main results, Theorems 1 and 2.

In this paper, we use the above described framework to study the interplay between query complexity

and memory for two fundamental problems in optimization and machine learning.

Convex optimization. We first consider convex optimization in which one aims to minimize a 1-

Lipschitz convex function f : R
d → R over the unit ball Bd(0, 1) ⊂ R

d. The goal is to output a

point x̃ ∈ Bd(0, 1) such that f(x̃) ≤ minx∈Bd(0,1) f(x) + ǫ, referred to as ǫ-approximate points. The

optimization algorithm has access to a first order oracle OCO : Rd → R × R
d, which for any query x

returns the couple (f(x), ∂f(x)) where ∂f(x) is a subgradient of f at the query point x.

Remark 4. The above requirement for ǫ-approximate optimality is weaker than asking to find a point

that is at distance ǫ from argminx∈Bd(0,1) f(x) (for 1-Lipschitz convex functions). As a result, our lower
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bounds for ǫ-approximate optimality hold a fortiori for the problem where one aims to find a point at

distance at most ǫ from the solution set.

Feasibility problem. Second, we consider the trade-off between memory and query complexity for the

feasibility problem, where the goal is to find an element x̃ ∈ Q for a convex set Q ⊂ Bd(0, 1). Instead of

a first-order oracle, the algorithm has access to a separation oracle OF : Rd → {Success} ∪Rd. For any

query x ∈ R
d, the separation oracle either returns Success reporting that x ∈ Q, or provides a separating

vector g ∈ R
d, i.e., such that for all x′ ∈ Q,

〈g,x− x′〉 > 0.

We say that an algorithm solves the feasibility problem with accuracy ǫ > 0 if it can solve any feasibility

problem for which the successful set contains a ball of radius ǫ, i.e., such that there exists x⋆ ∈ Bd(0, 1)
satisfying Bd(x

⋆, ǫ) ⊂ Q.

The feasibility problem is at least as hard as convex optimization in the following sense: an algo-

rithm that solves the feasibility problem with accuracy ǫ/L can be used to solve L-Lipschitz convex

optimization problems by feeding the subgradients from first-order queries to the algorithm as separating

hyperplanes. Alternatively, from any 1-Lipschitz function f one can derive a feasibility problem, where

the feasibility set is Q = {x ∈ Bd(0, 1), f(x) ≤ f⋆ + ǫ} and the separating oracle at x /∈ Q is a

subgradient ∂f(x) at x.

2.1 Overview of proof techniques and innovations

We prove the two main Theorems 1 and 2 with similar techniques, hence for conciseness, we only give

here the main ideas used to derive lower bounds for convex optimization. Although our proof borrows

its structure and techniques from [1], we introduce key innovations involving adaptivity to improve the

lower bounds up to the maximum quadratic memory for deterministic algorithms—up to logarithmic

factors. We recall, however, that the bounds in [1] hold for randomized algorithms as well. In the proofs,

we aim to optimize the dependence of the parameters in d. Constants, however, are not necessarily

optimized.

An adaptive optimization procedure. At the high level, we design an optimization procedure which

for any algorithm constructs a hard family of convex functions adaptively on its queries. To be precise,

the procedure constructs functions from the following family of convex functions with appropriately

chosen parameters η, γ1, γ2, pmax, lp, δ:

FA,v(x) = max

{

‖Ax‖∞ − η, ηv⊤
0 x, η

(

max
p≤pmax,l≤lp

v⊤
p,lx− pγ1 − lγ2

)}

. (2)

We take A ∼ U({±1}n×d) and v0 ∼ U(Dδ) uniformly sampled in the beginning, where Dδ ⊂ Sd−1

is a (finite) discretization of the sphere. The first term ‖Ax‖∞ − η acts as a barrier term: in order to

observe subgradients from the other terms, one needs the query x to satisfy ‖Ax‖∞ ≤ 2η. These are

called informative queries as introduced in [1]. Hence, informative queries must lie approximately in

the orthogonal space to the lines of A. The second term ηv⊤
0 x is used to ensure that solutions with low

objective (in particular with objective at most ηγ1/2) have norm bounded away from 0. As a result, these

informative queries, once renormalized, will still belong approximately to the nullspace of A denoted

Ker(A).

6



The adaptivity to the algorithm is captured in the third term, which is constructed along the optimiza-

tion process. This construction proceeds by periods p = 1, 2, . . . , pmax designed so that during each

period p, the algorithm is forced to visit a subspace of Ker(A) of dimension k. To do so, we iteratively

construct vectors vp,1, . . . vp,lp as follows. Suppose that at the beginning of step t of period p, one has

defined vectors vp,1, . . . ,vp,l.

• The procedure first evaluates the explored subspace of the algorithm during this period. In practice,

the procedure keeps in memory exploratory queries xip,1 , . . . ,xip,r during period p up to time t.
The exploratory subspace is then Span(xip,1 , . . . ,xip,r).

• If a query with a sufficiently low objective is queried, we sample a new vector vp,l+1 which is ap-

proximately orthogonal to the exploratory subspace. The corresponding new term in the objective

is v⊤
p,l+1x− pγ1 − (l + 1)γ2.

Once this new term is added to the objective, the algorithm is constrained to make queries with an

additional component along the direction −vp,l+1. Since this vector is approximately orthogonal to

all previous queries, this forces the algorithm to query vectors linearly independent from all previous

queries in period p. The period then ends once the dimension of the exploratory subspace reaches k,

having defined lp vectors vp,1, . . . ,vp,lp . As discussed above, the exploratory subspace must increase

dimension for any additional such vector. Thus, after lp ≤ k vectors, period p ends.

The constructed family of convex functions in Eq (2) is similar to the family described in Eq (1) that

were considered in [1]. However, by sampling the vectors vp,l adaptively, the optimization procedure is

able to fit in more terms, thereby providing a significant improvement in the lower bounds.

Benefits of adaptivity. We now expand on how the adaptive terms allow improving the lower bound of

[1] to match the quadratic upper bound of cutting plane methods. The limitation in the functions of the

form Eq (1) comes from the fact that the offset in the Nemirovski function is γ = Ω(
√

k log d/d). This

offset is necessary to ensure that with high probability, 1. subgradients v1, . . . ,vN are discovered exactly

in this order and 2. that any query which visits a new vector vi must not lie in the subspace formed by

the last k last informative vectors. Indeed, for the last claim, from high-dimensional concentration, for a

random unit vector v and a k dimensional subspace E, ‖PE(v)‖ = Θ(
√

k log d/d). This offset is not

necessary for our procedure, since by construction, at each period, a k-dimensional subspace of Ker(A)
is forced to be explored. As a result, we can take γ1 = Θ(

√

log d/d). This offset is still necessary to

ensure that vectors vp,l are discovered in their order of construction (lexicographic order on (p, l)) with

high probability.

An Orthogonal Vector Game with Hints. The next step of the proof involves linking the optimization

of the above-mentioned constructed functions with an Orthogonal Vector Game with Hints. Similarly

to the game introduced by [1], the goal for the player is to find k linearly-independent vectors approxi-

matively in Ker(A). To do so, the player can access an M -bit message Message and make m queries,

where M = ckd for a small constant c > 0. In the game introduced by [1], the queries are lines of

the matrix A. They then show that to find k dimensions of A, where A is taken uniformly at random

A ∼ {±1}d/2×d, (nearly) all the lines of A must be queried. The argument is information-theoretic:

each new dimension of Ker(A) must be (approximately) orthogonal to all lines of A. Hence, this pro-

vides additional mutual information O(k) for every line of A, including the d/2−m lines that were not

observed through queries. This extra information on A can only be explained by the message, which

has M bits. Hence, M ≥ O(k)(d/2 − m). Setting the constant c > 0 appropriately, this shows that

m = Ω(d).
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In our case, the optimization procedure ensures that the algorithm needs to explore k dimensions of

Ker(A) in each period. However, each query yields a response from the optimization oracle that can

either be a line of A (corresponding to the term ‖Ax‖∞ − η of Eq (2)) or v0 (term ηv⊤
0 x of Eq (2)),

or previously defined vectors vp,′l,′ . Now since the vectors vp′,l′ have been constructed adaptively on

the queries of the algorithm, which themselves may depend on lines of A, during a period p, responses

vp′,l′ for p′ < p are a source of information leakage for A from previous periods. As a result, the query

lower bound on the game introduced by [1] is not sufficient for our purposes. Instead, we introduce an

Orthogonal Vector Game with Hints, where hints correspond exactly to these vectors vp′,l′ from previous

periods. Informally, the game corresponds to a simulation of one of the periods of the optimization

procedure: for each query x, the oracle returns the subgradient that would have been returned in the

optimization procedure, up to minor details.

Bounding the information leakage. Once the link is settled, the goal is to prove lower bounds on the

number of queries needed to solve the Orthogonal Vector Game with Hints. The main difficulty is to

bound the information leakage from these hints. We recall that hints are of the form vp′,l′ , which have

been constructed adaptively on the queries of the algorithm during period p′. In particular, these contain

information on the lines of A queried during period p′ < p, which may be complementary with those

queried during period p. If this total information leakage through the hints yields a mutual information

with Ker(A) significantly higher than that of the M bits of Message, obtained lower bounds cannot

possibly reflect any trade-off with memory constraints. It is therefore essential to obtain information

leakage at most O(M) = Õ(dk).
To solve this issue, we introduce a discretization Dδ of the unit sphere where the vectors vp,l take

value. Next, we show that each individual vector vp′,l′ from previous periods can only provide informa-

tion Õ(k) on the matrix A. To have an intuition on this, note that for any (at most) k vectors x1, . . . ,xk,

the volume of the subset of the unit sphere Sd−1 of vectors approximately orthogonal to x1, . . . ,xk,

say S(x1, . . . ,xk) = {y ∈ Sd−1 : |y⊤xi| ≤ d−3, i ≤ k} is qk = O(1/d3k). Hence, since the vec-

tor v is roughly taken uniformly at random within Dδ ∩ S(x1, . . . ,xk), we can show that the mutual

information of v with the initial vectors x1, . . . ,xk is at most O(− log qk) = O(k log d). As a result,

even if m = d, the total information leakage through the vectors vp′,l′ from previous periods, is at most

O(kd log d). The formal proof involves an anti-concentration bounds on the distance of a random unit

vector to a linear subspace of dimension k, as well as a more involved discretization procedure than the

one presented above. In summary, by introducing adaptive functions through the optimization procedure,

we show that the same memory-sample trade-off holds for the Orthogonal Vector Game with Hints and

the game without hints introduced in [1], up to logarithmic factors.

3 Memory-constrained convex optimization

To prove our results we need to use discretizations of the unit sphere Sd−1. It will be convenient to

ensure that the partitions induced by these discretizations have equal area, which can be done with the

following lemma.

Lemma 5 ([42] Lemma 21). For any 0 < δ < π/2, the sphere Sd−1 can be partitioned into N(δ) =
(O(1)/δ)d equal volume cells, each of diameter at most δ.

We denote by Vδ = {Vi(δ), i ∈ [N(δ)]} the corresponding partition, and consider a set of repre-

sentatives Dδ = {bi(δ), i ∈ [N(δ)]} ⊂ Sd−1 such that for all i ∈ [N(δ)], bi(δ) ∈ Vi(δ). With these
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notations we can define the discretization function φδ as follows

φδ(x) = bi(δ), x ∈ Vi(δ).

3.1 Definition of the difficult class of optimization problems

In this section we present the class of functions that we use to prove our lower bounds. Throughout the

paper, we pose n = ⌈d/4⌉. We first define some useful functions. For any A ∈ R
n×d, we define gA as

follows

gA(x) = aimin
, imin = min{i ∈ [n], |a⊤

i x| = ‖Ax‖∞}.
With this function we can define a subgradient function for x 7→ ‖Ax‖∞,

g̃A(x) = ǫgA(x), ǫ = sign(gA(x)
⊤x).

We are now ready to introduce the class of functions which we use for our lower bounds. These are

of the following form.

FA,v(x) = max

{

‖Ax‖∞ − η, ηv⊤
0 x, η

(

max
p≤pmax

max
l≤lp

v⊤
p,lx− pγ1 − lγ2

)}

.

Here, A ∈ {±1}n×d is a matrix. Also, v0 and the terms vp,l are vectors in R
d. More precisely, these

vectors will lie in the discretization Dδ for δ = 1/d3. We postpone the definition of pmax and lp for

p ≤ pmax. Last, we use the following choice for the remaining parameters: η = 2/d3, γ1 = 12
√

log d
d

and γ2 =
γ1
4d . For convenience, we also define the functions

FA(x) = max{‖Ax‖∞ − η, ηv⊤
0 x}

FA,v,p,l(x) = max

{

‖Ax‖∞ − η, ηv⊤
0 x, η

(

max
(p′,l′)≤lex(p,l),l′≤lp′

v⊤
p′,l′x− p′γ1 − l′γ2

)}

,

with the convention FA,v,1,0 = FA. The functions FA,v,p,l will encapsulate the current state of the

function to be minimized: it will be updated adaptively on the queries of the algorithm. We also define

a subgradient function for FA,v,p,l by first favoring lines of A, then vectors from v in case of ties, as

follows,

∂FA,v,p,l(x) =











g̃A(xt) if FA,v,l,p(x) = ‖Ax‖∞ − η,
ηv0 otherwise and if FA,v,l,p(x) = ηv⊤

0 x,

ηvp,l otherwise and if (p, l) = argmax(p′,l′)≤lex(p,l)
v⊤
p′,l′x− p′γ1 − l′γ2.

In the last case, ties are broken by lexicographic order. We define ∂FA,v = ∂FA,v,pmax,lpmax
similarly.

We consider a so-called optimization procedure, which will construct the sequence of vectors v =
(vp,l) adaptively on the responses of the considered algorithm. Throughout this section, we use a param-

eter 1 ≤ k ≤ d/3 − 1 — which will be taken as k = Θ̃(M/d) where M is the memory of the algorithm

— and let pmax be the largest number which satisfies the following constraint.

pmax ≤ min{(cd,1d− 1)/k, cd,2(d/k)
1/3 − 1}, (3)

where cd,1 = 1/(902 log2 d) and cd,2 = 1/(81 log2/3 d).
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Input: d, k, pmax, algorithm alg

Part 1: Procedure to adaptively construct v;

1 Sample A ∼ U({±1}n×d) and v0 ∼ U(Dδ).;
2 Initialize the memory of alg to 0 and let p = 1, r = l = 0.;

3 for t ≥ 1 do

4 if t > d2 then Set (P,L) = (p, l) and break the for loop ;

5 Run alg with current memory to obtain a query xt;

6 if FA(x) > η then // Non-informative query

7 return (‖Axt‖∞ − η, g̃A(xt)) as response to alg.

8 else // Informative query

9 if r ≤ k − 1 and FA,v,p,l(xt) ≤ −ηγ1/2 and ‖PSpan(xi
p,r′

,r′≤r)⊥(xt)‖/‖xt‖ ≥ γ2
4 then

10 Set ip,r+1 = t and increment r← r + 1.

11 if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) and r < k then

12 Compute Gram-Schmidt decomposition bp,1, . . . , bp,r of xip,1 , . . . ,xip,r .;

13 Sample yp,l+1 uniformly on Sd−1 ∩ {z ∈ R
d : |b⊤p,r′z| ≤ d−3,∀r′ ≤ r}.;

14 Define vp,l+1 = φδ(yp,l+1) and increment l← l + 1.

15 else if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) and p+ 1 ≤ pmax then

16 Set lp = l and ip+1,1 = t.;
17 Compute the Gram-Schmidt decomposition bp+1,1 of xip+1,1

.;

18 Sample yp+1,1 uniformly on Sd−1 ∩ {z ∈ R
d : |b⊤p+1,1z| ≤ d−3}.;

19 Define vp+1,1 = φδ(yp+1,1), increment p← p+ 1 and reset l = r = 1.

20 else if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) then// End of the construction

21 Set lpmax = l, ipmax+1,1 = t.;
22 Set (P,L) = (pmax, l) and break the for loop.

23 return (FA,v,p,l(xt),∂FA,v,p,l(xt)) as response to alg.

24 end

Part 2: Procedure once v, P , L are constructed;

25 for t′ ≥ t do return (FA,v,P,L(xt′), ∂FA,v,P,L(xt′)) as response to the query xt′ ;

Procedure 1: The optimization procedure for algorithm alg

The optimization procedure is described in Procedure 1. First, we sample independently A ∼
U({±1}n×d) and v0 ∼ U(Dδ). The matrix A and vector v0 are then fixed for the rest of the learn-

ing procedure. Next, we describe the adaptive procedure to return subgradients. It proceeds by periods,

until pmax periods are completed, unless the total number of iterations reaches d2, in which case the con-

struction procedure ends as well. First, we say that a query is informative if FA(x) ≤ η. The procedure

proceeds by periods p ∈ [pmax] and in each period constructs the vectors vp,1, . . . ,vp,k iteratively. We

are now ready to describe the procedure at time t when the new query xt is queried. Let p ≥ 1 be the

index of the current period and vp,1, . . . ,vp,l be the vectors of this period constructed so far: the first

period is p = 1 and we allow l = 0 here. As will be seen in the construction, we always have l ≥ 1
except at the very beginning for which we use the notation FA,v,1,0 = FA. Together with these vectors,

the oracle keeps in memory indices ip,1, . . . , ip,r with r ≤ k of exploratory queries. The constructed

vectors from previous periods are vp′,l′ for p′ < p and l′ ≤ lp′ .

1. If xt is not informative, i.e. FA(x) > η, then procedure returns (‖Axt‖∞ − η, g̃A(xt)).
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2. Otherwise, we follow the next steps. If r ≤ k − 1 and

FA,v,p,l(xt) ≤ −
ηγ1
2

and
‖PSpan(xi

p,r′
,r′≤r)⊥(xt)‖

‖xt‖
≥ γ2

4
,

we set ip,r+1 = t and increment r. In this case, we say that xt is exploratory. Next,

(a) Recalling that FA,v,p,l is constructed so far, if FA,v,p,l(xt) ≥ η(−pγ1 − lγ2 − γ2/2), we do

not do anything.

(b) Otherwise, and if r < k, let bp,1, . . . , bp,r be the result from the Gram-Schmidt decompo-

sition of xip,1 , . . . ,xip,r . Then, let yp,l+1 be a sample of the distribution obtained by the

uniform distribution yp,l+1 ∼ U(Sd−1 ∩
{

z ∈ R
d : |b⊤p,r′z| ≤ 1

d3 ,∀r′ ≤ r
}

). We then pose

vp,l+1 = φδ(yp,l+1). Having defined this new vector, we increment l.

(c) Otherwise, if r = k, this ends period p. We write the total number of vectors defined during

period p as lp := l. If p+ 1 ≤ pmax, period p+ 1 starts from t = ip+1,1. Similarly to above,

let bp+1,1 be the result of the Gram-Schmidt procedure on xp+1,1, and we sample yp+1,1

according to a uniform distribution yp+1,1 ∼ U(Sd−1 ∩
{

z ∈ R
d : |b⊤p+1,1z| ≤ 1

d3

}

). Then,

we pose vp+1,1 = φδ(yp+1,1). We can then increment p and reset l = r = 1.

After these steps, with the current values of p and l, we return (FA,v,p,l(xt), ∂FA,v,l,p(xt)).

If we finished the last period p = pmax, or if we reached a total number of iterations d2, the construction

phase of the function ends. In both cases, let us denote by P,L the last defined period and vector vP,L.

In particular, we have p ≤ pmax From now on, the final function to optimize is FA,v,P,L and the oracle

is a standard first-order oracle for this function, using the subgradient function ∂FA,v,P,L.

We will relate this procedure to the standard convex optimization problem and prove query lower

bounds under memory constraints for this procedure. Before doing so, we formally define what we mean

by solving this optimization procedure.

Definition 6. Let alg be an algorithm for convex optimization. We say that an algorithm alg is suc-

cessful for the optimization procedure with probability q ∈ [0, 1] and accuracy ǫ > 0, if taking A ∼
U({±1}n×d), running alg with the responses given by the procedure, and denoting by x⋆(alg) the final

answer returned by alg, with probability at least q over the randomness of A and of the procedure, one

has

FA,v,P,L(x
⋆(alg)) ≤ min

x∈Bd(0,1)
FA,v,P,L(x) + ǫ.

3.2 Properties and validity of the optimization procedure

We begin this section with a simple lemma showing that during each period p at most lp ≤ k vectors

vp,1, . . . ,vp,lp are constructed.

Lemma 7. At any time of the construction procedure, l ≤ r. In particular, since r ≤ k, we have lp ≤ k
for all periods p ≤ pmax.

Proof Fix a period p. We prove this by induction. The claim is satisfied for any l = 1 when p ≥ 2 since

in this case, at the first time t = ip,1 of the period p we also construct the first vector vp,1. For p = 1,

note that the first informative query t that falls in scenarios (2b) or (2c) is exploratory. Indeed, in these

cases we have FA,v,1,0(xt) < η(−γ1 − γ2/2) ≤ −ηγ1/2, and the second criterion for an exploratory

query is immediate ‖PSpan(xi
1,r′

,r′≤0)(xt)‖ = 0 since no indices i1,r′ have been defined yet.
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We now suppose that the claim holds for l − 1 ≥ 1. Let tp,l be the time when vp,l is constructed

and ip,1, . . . , ip,r the indices constructed until the beginning of iteration tp,l. If a new index ip,r′ was

constructed in times (tp,l−1, tp,l) then the claim holds immediately. Suppose that this is not the case.

Note that tp,l falls in scenario (2b) which means in particular that

η(v⊤
p,l−1xtp,l − pγ1 − (l − 1)γ2) ≤ FA,v,p,l−1(xtp,l) < η(−pγ1 − (l − 1)γ2 − γ2/2).

As a result,

|y⊤
p,l−1xtp,l | ≥ |v⊤

p,l−1xtp,l | − δ >
γ2
2
− δ.

Next, when r ≥ l − 1 is the number of indices constructed so far, we decompose yp,l−1 = α1bp,1 +

. . . + αrbp,r + ỹp,l−1 where ỹp,l−1 ∈ Span(xip,r′ , r
′ ≤ r)⊥. Now by construction of yp,l−1 one has

|αr′ | ≤ d−3 for all r′ ≤ r. Thus,

‖ỹp,l−1 − yp,l−1‖ ≤
√
r

d3
≤ 1

d2
√
d
.

Therefore,

‖PSpan(xi
p,r′

,r′≤r)⊥(xtp,l)‖ ≥ |ỹ⊤
p,l−1xtp,l | ≥ |y⊤

p,l−1xtp,l | −
1

d2
√
d
>
γ2
2
− 1

d2
√
d
− δ ≥ γ2

4
.

As a result, tp,l is exploratory, hence ip,r+1 = tp,l. This ends the proof of the recursion and the lemma.

�

We recall that P and L denote the last defined period and vector vP,L. From Lemma 7, we have in

particular P ≤ pmax and L ≤ k. In the next result, we show that with high probability, the returned

values and vectors returned by the above procedure are consistent with a first-order oracle for minimizing

the function FA,v,P,L.

Proposition 8. Let A ∈ {±1}n×d and v0 ∈ Dδ. On an event E of probability at least 1− C√log d/d2
on the randomness of the procedure for some universal constant C > 0, all responses of the optimization

procedure are consistent with a first-order oracle for the function FA,v,P,L: for any t ≥ 1, if (ft,gt) is

the response of the procedure at time t for query xt, then ft = FA,v,P,L(xt) and gt = ∂FA,v,P,L(xt).

Proof Consider a given iteration t. We aim to show that (ft,gt) = (FA,v,P,L(xt), ∂FA,v,P,L(xt)).
By construction, if t ≥ d2, the result is immediate. Now suppose t ≤ d2. We first consider the case

when xt is non-informative (1). By definition, FA(xt) > η. Since for any (p, l) ≤lex (P,L) one has

|v⊤
p,lxt| ≤ ‖vp,l‖‖xt‖ ≤ 1, we have

FA,v,P,L(xt) = max

{

FA(xt), η

(

max
(p,l)≤lex(P,L)

v⊤
p,lx− pγ1 − lγ2

)}

= FA(xt).

As a result, the response of the procedure for xt is consistent with FA,v,P,L and the returned subgradient

is g̃A(xt) = ∂FA,v,P,L(xt). Therefore, it suffices to focus on informative queries (2). We will denote

by tp,l the index of the iteration when vp,l has been defined, for (p, l) ≤lex (P,L). Consider a specific

couple (p, l) ≤lex (P,L), and let r denote the number of constructed indices on or before tp,l. Let

bp,1, . . . , bp,r the corresponding vectors resulting from the Gram-Schmidt procedure on xip,1 , . . . ,xip,r .

Then, conditionally on the history until time tp,l, the vector vp,l was defined as vp,l = φδ(yp,l), where
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yp,l is sampled as ∼ U(Sd−1 ∩ {z ∈ R
d : |b⊤p,r′z| ≤ d−3,∀r′ ≤ r}). As a result, from Lemma 21, for

any t ≤ tp,l, we have

P

(

|x⊤
t vp,l| ≥ 3

√

2 log d

d
+

2

d2

)

≤ 6
√
2 log d

d6
.

We then define the following event

E =
⋂

(p,l)≤lex(P,L)

⋂

t≤tp,l

{

|x⊤
t vp,l| < 3

√

2 log d

d
+

2

d2

}

,

which by the union bound has probability P(E) ≥ 1 − 3
√
2 log d/d2. We are now ready to show that

the construction procedure is consistent with optimizing FA,v,P,L on the event E . As seen before, we

can suppose that xt is informative (2). Using the same notations as before, because E is met, for any

p < p′ ≤ P and l′ ≤ lp′ , we have for d ≥ 2,

v⊤
p′,l′xt − p′γ1 − l′γ2 < 3

√

2 log d

d
+

1

d
− pγ1 − γ1 ≤ −pγ1 −

γ1
2
≤ −pγ1 − dγ2 −

γ2
2
,

where we used 3
√
2 + 1 ≤ 6 and 2dγ2 ≤ γ1/2. As a result, we obtain that

max
(p′,l′)≤lex(P,L),p′>p

v⊤
p′,l′xt − p′γ1 − l′γ2 < −pγ1 − lγ2 −

γ2
2
.

Next, we consider the case of vectors vp,l′ where l ≤ l′ ≤ lp and tp,l′ ≥ t (this also includes the case

when we defined vp,l at time t = tp,l). We write l̃ for the smallest such index l. As a remark, l̃ ∈ {l, l+1}.
Note that if such indices exist, this means that before starting iteration t, the procedure has not yet reached

r = k. There are two cases. If xt was exploratory, we have t = ip,r hence ‖PSpan(bp,r′ ,r
′≤r)⊤(xt)‖ = 0.

If xt is not exploratory, either

‖PSpan(bp,r′ ,r
′≤r)⊤(xt)‖ <

γ2
4
‖xt‖ ≤

γ2
4
, (4)

or we have FA,v,p,l(xt) > −ηγ1/2. We start with the last scenario when FA,v,p,l(xt) > −ηγ1/2. Then,

on E , one has

max
(p,l)<lex(p′,l′)≤lex(P,L)

v⊤
p′,l′xt − p′γ1 − l′γ2 ≤ −γ1 + 3

√

2 log d

d
+

1

d
≤ −γ1

2

As a result, this shows that FA,v,P,L(xt) = FA,v,p,l(xt). Hence using a first-order oracle from FA,v,l,p

at xt is already consistent with FA,v,P,L. Thus, for whichever step (2a), (2b) or (2c) is performed,

since these can only increase the knowledge on v, the response given by the construction procedure is

consistent with minimizing FA,v.

It remains to treat the first two scenarios in which we always have Eq (4). In particular, when writing

xt = α1bp,1 + . . . + αrbp,r + x̃t where x̃t = PSpan(bp,r′ ,r
′≤r)⊥(xt), we have ‖x̃t‖ < γ2

4 . As a result,

for l̃ ≤ l′ ≤ lp, one has for

|v⊤
p,l′xt| ≤ |y⊤

p,l′xt|+ δ ≤ |α1||y⊤
p,l′bp,1|+ . . . + |αr||y⊤

p,l′bp,r|+ ‖x̃t‖+ δ

< ‖α‖1
1

d3
+
γ2
4

+ δ

≤ γ2
4

+
1

d2
√
d
+

1

d3
≤ γ2

2
,
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where in the last inequality we used d ≥ 3. As a result, provided that l̃ exists, this shows that

max
l̃≤l′≤lp

v⊤
p,l′xt − pγ1 − l′γ2 = v⊤

p,l̃
xt − pγ1 − l̃γ2 < −pγ1 − l̃γ2 +

γ2
2
. (5)

On the other hand, if t = ip+1,1, the same reasoning works for t viewing it as in period p + 1, which

shows for this case that

max
l′≤lp+1

v⊤
p+1,l′xt − (p + 1)γ1 − l′γ2 = v⊤

p+1,1xt − (p+ 1)γ1 − γ2 < −(p+ 1)γ1 −
γ2
2
. (6)

As a conclusion of these estimates, we showed that on E , we have

FA,v,P,L(xt) = max
{

FA,v,p,l(xt), η(v
⊤
p′,l′xt − p′γ1 − l′γ2)

}

:= F̃A,v,t(xt)

where (p′, l′) is the very next vector that is defined after starting iteration t (potentially, it has tp′,l′ = t
if we defined a vector at this time). It now suffices to check that the value and vector returned by the

procedure are consistent with the right-hand side. By construction, if we constructed vp′,l′ at step t: case

(2b) or (2c), then the procedure directly uses a first-order oracle for F̃A,v,t. Further, by construction

of the subgradients since they break ties lexicographically in (p, l), the returned subgradient is exactly

∂FA,v,P,L(xt). It remains to check that this is the case when no vector vp′,l′ is defined at step t: case

(2a). This corresponds to the case when FA,v,p,l(xt) ≥ η(−pγ1 − lγ2 − γ/2). Now in this case, the

upper bound estimates from Eq (5) and Eq (6) imply that

v⊤
p′,l′xt − p′γ1 − l′γ2 < −pγ1 − lγ2 − γ/2,

and as a result, FA,v,P,L(xt) = FA,v,p,l(xt). Therefore, using a first-order oracle of FA,v,p,l at xt is

valid, and the break of ties of the subgradient of F̃A,v,t is the same as the break of ties of ∂FA,v,P,L(xt).
This ends the proof that on E the procedure gives responses consistent with an optimization oracle for

FA,v,P,L with subgradient function ∂FA,v,P,L. Because P(E) ≥ 1 − C
√
log d/d2 for some constant

C > 0, this ends the proof of the proposition. �

Last, we provide an upper bound on the optimal value of FA,v,P,L.

Proposition 9. Let A ∼ U({±1}n×d) and v0 ∼ U(Dδ). For any algorithm alg for convex optimization,

let v be the resulting set of vectors constructed by the randomized procedure. With probability at least

1− C√log d/d over the randomness of A, v0 and v, we have

min
x∈Bd(0,1)

FA,v(x) ≤ −
η

40
√

(kpmax + 1) log d
,

for some universal constant C > 0.

Proof For simplicity, let us enumerate all the constructed vectors v1, . . . ,vlmax
by order of construc-

tion. Hence, lmax ≤ pmaxk. We use the same numerotation for y1, . . . ,ylmax
. Now let Cd =

√

40(lmax + 1) log d and consider the following vector.

x̄ = − 1

Cd

lmax
∑

l=0

PSpan(ai,i≤n)⊥(vl).
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In particular, note that we included v0 in the sum. For convenience, we write PA⊥ instead of PSpan(ai,i≤n)⊥ .

Also, for convenience let us define zl =
∑

l′≤l PA⊥(vl). Fix an index 1 ≤ l ≤ lmax. Then, by Lemma

21, with t0 :=
√

6 log d
d + 2

d2
, we have

P

(

|PA⊥(vl+1)
⊤zl| > t0‖zl‖

)

= P

(

|v⊤
l+1PA⊥(zl)| > t0‖zl‖

)

≤ P

(

|v⊤
l+1PA⊥(zl)| > t0‖PA⊥(zl)‖

)

≤ 2
√
6 log d

d2
.

Similarly, we have that

P

(

|v⊤
l+1zl| > t0‖zl‖

)

≤ 2
√
6 log d

d2
.

Now consider the event E =
⋂

l≤lmax
{|v⊤

l zl−1|, |PA⊥(vl)
⊤zl−1| ≤ t0‖zl‖}, which since lmax ≤ d, by

the union bound has probability at least 1− 4
√
6 log d/d. Then, on E , for any l < lmax,

‖zl+1‖2 ≤ ‖zl‖2 + ‖PA⊥(vl+1)‖2 + 2|PA⊥(vl+1)
⊤zl| ≤ ‖zl‖2 + 1 + 2t0‖zl‖.

We now prove by induction that ‖zl‖2 ≤ 40 log d · (l + 1), which is clearly true for z0 since ‖z0‖ =
‖PA⊥(v0)‖ ≤ ‖v0‖ ≤ 1. Suppose this is true for l < lmax. Then, using the above equation and the fact

that t0 ≤ 3
√

log d
d for d ≥ 4,

‖zl+1‖2 ≤ 40 log d · (l + 1) + 1 + 6
√
40 log d

√

l + 1

d
≤ 40 log d · (l + 2),

where we used lmax + 1 ≤ d, which completes the induction. In particular, on E , we have that ‖x̄‖ ≤ 1.

Now observe that by construction x̄ ∈ Span(ai, i ≤ n)⊥ so that ‖Ax̄‖∞ = 0. Next, for any 0 ≤ l ≤
lmax, we have

v⊤
l x̄ = −v⊤

l zlmax

Cd
= − 1

Cd



‖PA⊥(vl)‖2 + v⊤
l zl−1 +

∑

l<l′≤lmax

v⊤
l PA⊥(vl′)



 .

We will give estimates on each term of the above equation. First, if the indices ip,1, . . . , ip,r were defined

before defining vl, we denote ỹ = PSpan(xi
p,r′

,r′≤r)⊥(yl), the component of yl which is perpendicular

to the explored space at that time. Then, we can write yl = αl
1bp,1 + . . .+ αl

rbp,1 + ỹl, and note that

‖ỹl‖ =
√

‖yl‖ − (αl
1)

2 − . . .− (αl
r)

2 ≥
√

1− k

d6
≥ 1− 1

d5
.

Then, we have

‖PA⊥(vl)‖ ≥ ‖PA⊥(yl)‖ − δ
≥ ‖PSpan(ai,i≤n,bp,r′ ,r≤r′)⊥(yl)‖ − δ
= ‖PSpan(ai,i≤n,bp,r′ ,r≤r′)⊥(ỹl)‖ − δ

≥
∥

∥

∥

∥

PSpan(ai,i≤n, bp,r′ ,r
′≤r)⊥

(

ỹl

‖ỹl‖

)∥

∥

∥

∥

− 1

d5
− δ.

15



As a result, since δ = d−3, this shows that

‖PA⊥(vl)‖2 ≥
∥

∥

∥

∥

PSpan(ai,i≤n, bp,r′ ,r
′≤r)⊥

(

ỹl

‖ỹl‖

)∥

∥

∥

∥

2

− 2δ.

Now observe that dim(Span(ai, i ≤ n, bp,r′, r′ ≤ r)⊥) ≥ d−n− k, while
ỹl

‖ỹl‖ is a uniformly random

unit vector in Span(bp,r′ , r ≤ r′)⊥. Therefore, using Proposition 20 we obtain for t < 1,

P

(

‖PA⊥(vl)‖2 + 2δ − d− n− k
d

≤ −t
)

≤ P

(

∥

∥

∥

∥

PSpan(ai,i≤n, bp,r′ ,r
′≤r)⊥

(

ỹl

‖ỹl‖

)∥

∥

∥

∥

2

− d− n− k
d

≤ −t
)

≤ e−(d−k)t2 .

As a result since d− n− k ≥ d/2, we obtain

P

(

‖PA⊥(vl)‖2 ≤
1

2
− 2

√

log d

d
− 2δ

)

≤ 1

d2
.

Now define F =
⋂

l≤lmax
{‖PA⊥(vl)‖2 ≥ 1

2 − 2
√

log d
d − 2δ}, which since lmax + 1 ≤ d and by

the union bound has probability at least P(F) ≥ 1 − 1/d. Next, we turn to the last term. For any

0 ≤ l < lmax, we now focus on the sequence (
∑l+u

l′=l+1 v
⊤
l PA⊤(yl′))1≤u≤lmax−l and first note that this

is a martingale. These increments are symmetric (because yl′ is symmetric) even conditionally on A and

vl,yl, . . . ,yl′−1. Next, let t1 = 2
√

3 log d
d + 2

d2
. Note that for d ≥ 4, we have t1 ≤ 4

√

log d
d . Further, by

Lemma 21,

P(|v⊤
l PA⊤(yl′)| > t1) = P(|PA⊤(vl)

⊤yl′ | > t1) ≤
4
√
3 log d

d4
,

where we used the fact that PA⊥ is a projection. Let Gl =
⋂

l<l′≤lmax
{|v⊤

l PA⊤(vl′)| ≤ t1}, which by

the union bound has probability P(Gl) ≥ 1 − 4
√
3 log d/d3. Next, we define Il,u = (v⊤

l PA⊤(yl+u) ∧
t1)∨ (−t1), the increments capped at absolute value t1. Because v⊤

l PA⊤(yl+u) is symmetric, so is Il,u.

As a result, these are bounded increments of a martingale, to which we can apply the Azuma-Hoeffding

inequality.

P

(∣

∣

∣

∣

∣

lmax−l
∑

u=1

Il,u

∣

∣

∣

∣

∣

≤ 2t1
√

(lmax − l) log d
)

≥ 1− 2

d2
.

We denote byHl this event. Now observe that on Gl, the increments Il,u and v⊤
l PA⊤(yl+u) coincide for

all 1 ≤ u ≤ lmax − l. As a result, on Gl ∩Hl we obtain

∣

∣

∣

∣

∣

∣

∑

l<l′≤lmax

v⊤
l PA⊥(vl′)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

l<l′≤lmax

v⊤
l PA⊥(yl′)

∣

∣

∣

∣

∣

∣

+ (lmax − 1)δ

≤
∣

∣

∣

∣

∣

lmax−l
∑

u=1

Il,u

∣

∣

∣

∣

∣

+ (d− 2)δ

≤ 2t1
√

lmax log d+ (d− 2)δ.
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Then, on the event E ∩ F ∩⋂l≤lmax
Gl ∩Hl, for any 1 ≤ l ≤ lmax one has

v⊤
l zlmax

≥ 1

2
− 2

√

log d

d
− t0‖zl‖ − 2t1

√

lmax log d−
1

d2

≥ 1

2
− 2

√

log d

d
− 3 log d

√

40
lmax + 1

d
− 8 log d

√

lmax

d
− 1

d2

≥ 1

2
− 30 log d

√

lmax + 1

d

≥ 1

6
,

where in the last inequalities we used the fact that lmax ≤ kpmax ≤ cd,1d − 1 where cd,1 = 1
902 log2 d

as per Eq (3). As a result, we obtain that on E ∩ F ∩ ⋂l≤lmax
Gl ∩ Hl, which has probability at most

1− C√log d/d for some constant C > 0,

max
p≤pmax,l≤k

v⊤
p,lx̄ ≤ −

1

6Cd
≤ − 1

40
√

(kpmax + 1) log d
.

Since ‖Ax̄‖∞ = 0, and η ≥ η

40
√

(kpmax+1) log d
, this shows that

FA,v(x̄) ≤ −
η

40
√

(kpmax + 1) log d
.

This ends the proof of the proposition. �

3.3 Reduction from convex optimization to the optimization procedure

According to Proposition 8, with probability at least 1 − C√log d/d2, the procedure returns responses

that are consistent with a first-order oracle of the function FA,v,P,L where vP,L is the last vector to have

been defined. Now observe that for any constructed vectors v, the function FA,v,P,L is
√
d-Lipschitz. As

a result, if there exists an algorithm for convex optimization that guarantees ǫ accuracy for 1-Lipschitz

functions, by rescaling, there exists an algorithm alg which is successful for the optimization procedure

with probability 1−C√log d/d2 and ǫ
√
d accuracy. In the next proposition, we show that to be success-

ful, such an algorithm needs to properly define the complete function FA,v, i.e., to complete all periods

until pmax.

Proposition 10. Let alg be a successful algorithm for the optimization procedure with probability q ∈
[0, 1] and precision η/(2

√
d). Suppose that alg performs at most d2 queries during the optimization

procedure. Then when running alg with the responses of the optimization procedure, alg succeeds and

ends the period pmax with probability at least q −C√log d/d for some universal constant C > 0.

Proof Let x⋆(alg) = xT denote the final answer of alg when run with the optimization procedure. By

hypothesis, we have T ≤ d2. As before, let P ≤ pmax and L ≤ k be the indices such that the last vector

constructed by the optimization procedure is vP,L. Let E be the event when alg run on the optimization

procedure does not end period pmax. We focus on E and consider two cases.

First, suppose that T > tP,L, i.e., the last vector was not constructed at time T . As a result, this means

that xT corresponds either to a non-informative query—scenario (1)—in which case FA,v,P,L(xT ) ≥
FA(xT ) ≥ η, or this means that FA,v,P,L(xt) ≥ η(−Pγ1 − Lγ2 − γ/2)—scenario (2a).
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Second, we now suppose that T = tP,L, i.e., the last vector was constructed at time T . Then, by

construction of vP,L and yP,L, we have indices iP,1, . . . , iP,r ≤ T such that with the Gram-Schmidt

decomposition bP,1, . . . , bP,r of xiP,1
, . . . ,xiP,r

, we have |b⊤p,r′yP,L| ≤ d−3 for all r′ ≤ r. In particular,

writing xT = α1bP,1+ . . .+αrbP,r+ x̃T , where x̃T ∈ Span(xiP,r′
, r′ ≤ r)⊥, either we have iP,r = T ,

in which case x̃T = 0, or xT was not exploratory in which case we directly have FA,v,P,L(xT ) ≥
FA,v,P,L−1(xT ) > −ηγ1/2, or we have ‖x̃T ‖ < ‖xT ‖γ2/4 ≤ γ2/4. For all remaining cases to

consider, we obtain

|v⊤
P,LxT | ≤ |y⊤

P,LxT |+ δ ≤ ‖α‖1
d3

+ ‖x̃T ‖+ δ ≤ 1

d3
+

1

d2
√
d
+
γ2
4
<
γ2
2
.

In the last inequality, we used d ≥ 4. This shows that FA,v,P,L(xT ) ≥ η(−Pγ1 − Lγ2 − γ2/2). As a

result, in all cases this shows that FA,v,P,L(x
⋆(alg)) ≥ η(−Pγ1 − Lγ2 − γ2/2) ≥ −η(pmax + 1)γ1.

Now define the event

F =

{

min
x∈Bd(0,1)

FA,v(x) ≤ −
η

40
√

(kpmax + 1) log d

}

.

By Proposition 9 we have P(F) ≥ 1−C√log d/d. Now from Eq (3),

(pmax + 1)3/2 ≤ 1

60γ1
√
k log d

.

Thus,

(pmax + 1)γ1 ≤
1

60
√

k(pmax + 1) log d
≤ 1

60
√

(kpmax + 1) log d

Then, since FA,v,P,L ≤ FA,v, this shows that on E ∩ F ,

FA,v,P,L(x
⋆(alg)) ≥ −η(pmax + 1)γ1 ≥ min

x∈Bd(0,1)
FA,v(x) +

η

120
√

(kpmax + 1) log d

> min
x∈Bd(0,1)

FA,v,P,L(x) +
η

2
√
d

where in the last inequality, we used kpmax ≤ cd,1d − 1. As a result, letting G be the event when alg
succeeds for precision ǫ = η/(2

√
d). By hypothesis, P(G) ≥ q. Now from the above equations, one has

E ∩ F ∩ G = ∅. Therefore, P(G ∩ Ec) ≥ P(G) − P(G ∩ E ∩ F)− P(Fc) ≥ q −C√log d/d. This ends

the proof of the proposition. �

3.4 Reduction of the optimization procedure to an Orthogonal Vector Game with Hints

We are now ready to introduce an orthogonal vector game where the main difference with the game

introduced in [1] is that the player can provide additional hints.

We first prove that solving the optimization procedure implies solving the Orthogonal Vector Game

with Hints.

Proposition 11. Letm ≤ d. Suppose that there is an M -bit algorithm that is successful for the optimiza-

tion procedure with probability q for accuracy ǫ = η/(2
√
d) and uses at most mpmax queries. Then,

there is an algorithm for Game 2 for parameters (d, k,m,M,α = 2η
γ1
, β = γ2

4 ), for which the Player

wins with probability at least q − C√log d/d for some universal constant C > 0.
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Input: d, k, m, M , α, β
1 Oracle: Set n← ⌊d/4⌋, sample A ∼ U({±1}n×d).;
2 Player: Observe A;

3 for l ∈ [d] do

4 Player: Based on A and any previous queries and responses, submit at most k vectors

xl,1, . . . ,xl,rl .;

5 Oracle: Perform the Gram-Schmidt decomposition bl,1, . . . , bl,rl of xl,1, . . . ,xl,rl . Then,

sample a vector yl ∈ Sd−1 according to a uniform distribution

U(Sd−1 ∩ {z ∈ R
d : ∀r ≤ rl, |b⊤l,rz| ≤ d−3}). As response to the query, return vl = φδ(yl) to

the player.

6 end

7 Player: Based on A, all previous queries and responses, store an M -bit message Message.;

8 Player: Based on A, all previous queries and responses, submit a function

g : Bd(0, 1)→ ({aj , j ≤ n} ∪ {vl, l ≤ d})× [d2] to the Oracle.

9 for i ∈ [m] do

10 Player: Based on Message, any previous queries x1, . . . ,xi−1 and responses g1, . . . ,gi−1 from

this loop phase, submit a query xi ∈ R
d.;

11 Oracle: As the response to query zi, return gi = g(zi).

12 end

13 Player: Based on all queries and responses from this phase {zi,gi, i ∈ [m]}, and on Message,

return some vectors y1, . . . ,yk to the oracle.;

14 The player wins if the returned vectors have unit norm and satisfy for all i ∈ [k]

1. ‖Ayi‖∞ ≤ α

2. ‖PSpan(y1,...,yi−1)
⊥(yi)‖2 ≥ β.

Game 2: Orthogonal Vector Game with Hints

Proof Let alg be an M -bit algorithm solving the feasibility problem with mpmax queries with probabil-

ity at least q. We now describe the strategy for Game 2.

In the first part of the strategy, the player observes A. First, submit an empty query to the Oracle to

obtain a vector v0, which as a result is uniformly distributed among Dδ. We then proceed to simulate the

optimization procedure for alg using parameters A and v0 (lines 3-6 of Game 2). Precisely, whenever

a new vector vp,l needs to be defined according to the optimization procedure, the player submits the

corresponding vectors xip,1 , . . . ,xip,r to the oracle and receives in return a vector which defines vp,l.

In this manner, the player simulates exactly the optimization procedure. In all cases, the number of

queries in this first phase is at most 1 + kpmax ≤ d. For the remaining queries to perform, the player

can query whichever vectors, these will not be used in the rest of the strategy. If the simulation did not

end period pmax, the complete procedure fails. We now describe the rest of the procedure when period

pmax was ended. During the simulation, the algorithm records the time ip,1 when period p started for

all p ≤ pmax + 1. Recall that for pmax + 1, we only define ipmax+1,1, this is the time that ends period

pmax. Now by hypothesis, ipmax+1,1 ≤ mpmax. As a result, there must be a period p ≤ pmax which

uses at most m queries: ip+1,1 − ip,1 ≤ m. We define the memory Message to be the memory of alg
just before starting iteration ip,1, at the beginning of period p (line 7 of Game 2). Next, since the period

pmax was ended, the vectors vp,l for p ≤ pmax, l ≤ lp were all defined. The player can therefore submit
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the function gA,v to the Oracle (line 8 of Game 2) as follows,

gA,v : x 7→



























(gA(x), 1) if FA,v(x) = ‖Ax‖∞ − η,
(v0, 2) otherwise and if FA,v(x) = ηv⊤

0 x,

(vp,l, 2 + (p − 1)k + l) otherwise and if

(p, l) = argmax
(p′,l′)≤lex(pmax,lpmax )

v⊤
p′,l′x− pγ1 − lγ2.

(7)

Intuitively, the first component of gA,v gives the subgradient ∂FA,v to the following two exceptions: we

always return ai instead of ±ai and we return v0 (resp. vp,l) instead of ηv0 (resp. ηvp,l). The second

term of gA,v has values in [2 + pmaxk]. Hence, since 2+ pmaxk ≤ d2, the function gA,v takes values in

({aj , j ≤ n} ∪ {vl, l ≤ d})× [d2].
The strategy then proceeds to play the Orthogonal Vector Game in a second part (lines 9-12 of Game

2) and uses the responses of the Oracle to simulate the run of alg for the optimization procedure in period

p. To do so, we set the memory state of the algorithm alg to be Message. Then, for the next m iterations

we proceed as follows. At iteration i of the process, we run alg with its current state to obtain a new

query zi which is then submitted to the oracle of the Orthogonal Vector Game, to get a response (gi, si).
We then use this response to simulate the response that was given by the optimization procedure in the

first phase, computing (vi, g̃i) as follows

(vi, g̃i) =











(|g⊤
i zi| − η, sign(g⊤

i zi)gi) si = 1,

(ηg⊤
i zi, ηgi) si = 2,

(η(g⊤
i zi − pγ1 − lγ2), ηgi) si = 2 + (p− 1)k + l, p ≤ pmax, 1 ≤ l ≤ k.

(8)

We can easily check that in all cases, vi = FA,v(zi) and that g̃i = ∂FA,v(zi). We then pass (vi, g̃i) as

response to alg for the query zi so it can update its state. Further, having defined i1 = 1, the player can

keep track of exploratory queries by checking whether

vi ≤ −
ηγ1
2

and
‖PSpan(zi

r′
,r′≤r)⊥(zi)‖
‖zi‖

≥ γ2
4
,

where i1, . . . , ir are the indices defined so far. We perform m such iterations unless alg stops and use

the last remaining queries arbitrarily. Next, we check if the last index ik was defined. If not, we pose

ik = m+ 1 and let zm+1 be the next query of alg. The final returned vectors are
zi1

‖zi1
‖ , . . . ,

zik

‖zik
‖ . This

ends the description of the player’s strategy.

We now show that the player wins with good probability. First, since alg makes at most mpmax ≤ d2
queries, by Proposition 10, on an event E of probability at least q − C√log d/d, alg succeeds and ends

the period pmax. On E , by construction, the first phase of the strategy does not fail. Now we show that

in the second phase (lines 9-12 of Game 2), the queried vectors coincide exactly with the queried vectors

from the corresponding period p in the first phase (lines 3-6 of Game 2). To do so, we only need to

check that the responses provided to alg coincide with the response given by the optimization procedure.

First, recall that on E , all periods are completed, hence FA,v,P,L = FA,v. Next, by Proposition 8, the

responses of the procedure are consistent with optimizing FA,v,P,L and subgradients ∂FA,v,P,L on an

event F of probability at least 1 − C ′√log d/d2. Therefore, on E ∩ F , it suffices to check that the

responses provided to alg are consistent with FA,v, which we already noted: at every step i, (vi, g̃i) =
(FA,v(zi), ∂FA,v(zi)). This proves that the responses and queries coincide exactly with those given by

the optimization procedure on E ∩ F .
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Input: d, k, pmax, m, algorithm alg

Part 1: Strategy to store Message knowing A;

1 Initialize the memory of alg to be 0.;

2 Submit ∅ to the Oracle and use the response as v0.;

3 Run alg with the optimization procedure knowing A and v0 until the first exploratory query xi1,1 .

4 for p ∈ [pmax] do

5 Let Memoryp be the current memory state of alg and ip,1 the current iteration step. ;

6 Run alg with the feasibility procedure until period p ends at iteration step ip+1,1. If alg stopped

before, return the strategy fails. When needed to sample a unit vector vp′,l′ , submit vectors

xip′,1 , . . .xip′,r′ to the Oracle where ip′,1, . . . , ip′,r′ are the exploratory queries defined at that

stage. We use the corresponding response of the Oracle as vp′,l′ .;

7 if ip+1,1 − ip,1 ≤ m then

8 Set Message = Memoryp
9 end

10 for Remaining queries to perform to Oracle do Submit arbitrary query, e.g. ∅ ;

11 if Message has not been defined yet then return The strategy fails;

12 Submit gA,v to the Oracle as defined in Eq (7).;

Part 2: Strategy to make queries;

13 Set the memory state of alg to be Message and define i1 = 1, r = 1.;

14 for i ∈ [m] do

15 Run alg with current memory to obtain a query zi.;

16 Submit zi to the Oracle from Game 2, to get response (gi, si).;
17 Compute (vi, g̃i) using zi, gi and si as defined in Eq (8) and pass (vi, g̃i) as response to alg.;

18 if vi ≤ −ηγ1/2 and ‖PSpan(zi
r′
,r′≤r)⊥(zi)‖/‖zi‖ ≥ γ2

4 then

19 Set ir+1 = i and increment r ← r + 1.

20 end

Part 3: Strategy to return vectors;

21 if index ik has not been defined yet then

22 With the current memory of alg find a new query zm+1 and set ik = m+ 1.;

23 return
{

zi1

‖zi1
‖ , . . . ,

zik

‖zik
‖

}

to the Oracle.

Algorithm 3: Strategy of the Player for the Orthogonal Vector Game with Hints
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Next, by construction, the chosen phase p had at most m iterations. Thus, on E ∩ F , among

z1, . . . ,zm+1, we have the vectors xip,1 , . . . ,xip,k . Further, if ik was not defined during part 2 of the

strategy, this means that ik = m+1, as defined in the player’s strategy (line 21-22 of Algorithm 3). As a

result, for all u ≤ k, we have ziu = xip,u . We now show that the returned vectors
xip,1

‖xip,1
‖ , . . . ,

xip,k

‖xip,k
‖ are

successful for Game 2. First, because ip,1, . . . , ip,k are exploratory queries, we have directly for u ≤ k,

‖PSpan(xip,v ,v<u)⊥(xip,u)‖
‖xip,u‖

≥ γ2
4
.

Next, if l is the index of the last constructed vector vp,l before ip,u in the optimization procedure, one

has FA,v,p,l(xip,u) ≤ −ηγ1/2. Therefore, ‖Axip,u‖∞ ≤ FA,v,p,l(xip,u) + η ≤ η. Further, ηv⊤
0 xip,u ≤

FA,v,p,l(xip,u) ≤ −ηγ1/2. This proves that ‖xip,u‖ ≥ γ1/2. Putting the previous two inequalities

together yields
‖Axip,u‖∞
‖xip,u‖

≤ 2η

γ1
.

As a result, this shows that the returned vectors are successful for Game 2 for the desired parame-

ters α = 2η/γ1 and β = γ2/4. Thus, the player wins on E ∩ F , which has probability at least

q − (C + C ′)
√
log d/d2 by the union bound. This ends the proof of the proposition. �

3.5 Query lower bound for the Orthogonal Vector Game with Hints

Before proving a lower bound on the necessary number of queries for Game 2, we need to introduce

two results. The first one is a known concentration result for vectors in the hypercube. It shows that

for a uniform vector in the hypercube, being approximately orthogonal to k orthonormal vectors has

exponentially small probability in k.

Lemma 12 ([1]). Let h ∼ U({±1}d). Then, for any t ∈ (0, 1/2] and any matrix Z = [z1, . . . ,zk] ∈
R
d×k with orthonormal columns,

P(‖Z⊤h‖∞ ≤ t) ≤ 2−cHk.

We will also need an anti-concentration bound for random vectors, which intuitively provides a lower

bound for the previous concentration result. The following lemma shows that for a uniformly random unit

vector, being orthogonal to k orthonormal vectors is still achievable with exponentially small probability

in k.

Lemma 13. Let k < d and x1, . . . ,xk be k orthonormal vectors. Then,

Py∼U(Sd−1)

(

|x⊤
i y| ≤

1

d3
,∀i ≤ k

)

≥ 1

ed−4d3k
.

Proof Let y ∼ U(Sd−1) be a uniformly random unit vector. Then, for i < k and any y1, . . . , yi−1 such
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that |y1|, . . . , |yi−1| ≤ 1
d3

, we have

P

(

|yi| ≤
1

d3
| y1, . . . , yi−1

)

= Pu∼U(Sd−i)



|u1| ≤
1

d3
√

1− (y21 + . . .+ y2i−1)





≥
∫ 1/d3

0 (1− y2)(d−i−1)/2dy
∫ 1
0 (1− y2)(d−i−1)/2dy

≥ (1− d−6)d/2

d3
≥ e−d−5

d3
,

where in the last equation we used d ≥ 2. Therefore, we can show by induction that P(|yi| ≤ 1/d3,∀i ≤
k) ≥ e−kd−5

d3k
. Thus, by isometry this shows that

P

(

|x⊤
i y| ≤

1

d3
,∀i ≤ k

)

≥ 1

ed−4d3k
.

This ends the proof of the lemma. �

We are now ready to prove a query lower bound for Game 2. Precisely, we show that for appropriate

choices of parameters, one needs m = Ω̃(d) queries. The proof is closely inspired from the arguments

given in [1]. The main added difficulty arises from bounding the information leakage of the provided

hints. As such, our goal is to show that these do not provide more information than the message itself.

Proposition 14. Let k ≥ 20M+3d log(2d)+1
cHn . And let 0 < α, β ≤ 1 such that α(

√
d/β)5/4 ≤ 1

2 . If

the Player wins the Orthogonal Vector Game with Hints (Game 2) with probability at least 1/2, then

m ≥ cH
8(30 log d+cH)d.

Proof We first define some notations. Let Y = [y1, . . . ,yk] be the matrix storing the final outputs

from the algorithm. Next, for the responses of the oracle (g1, s1), . . . , (gm, sm), we first store all the

scalar responses in a vector c = [s1, . . . , sm]. We now focus on the responses g1, . . . ,gm. Next, let G̃

denote the matrix containing these responses of the oracle which are lines of A. Let G be the matrix

containing unique columns from G̃, augmented with rows of A so that it has exactly m columns which

are all different rows of A. Last, let A′ be the matrix A once the rows from G are removed. Next, let

Ṽ be a matrix containing the responses of the oracle which are vectors vl, ordered by increasing index l.
As before, let V be the matrix Ṽ where we only conserve unique columns and append it with additional

vectors vl so that V has exactly m columns. We denote by w1, . . . ,wm these vectors, and recall that

they are vectors vl ordered by increasing order of index l. Last, we define a vector j of indices such

that j(i) contains the information of which column of the matrices G or V corresponds gi. Precisely, if

gi is a line a from A, we set j(i) = j where j is the index of the column from G corresponding to a.

Otherwise, if j is the index of the column from V corresponding to gi, we set j(i) = m+ j.
Next, we argue that Y is a deterministic function of Message, the matrices G, V and the vector of

indices j and c. First, c provides the scalar responses directly. For the d-dimensional component of the

responses, first, note that from G, V and j one can easily recover the vectors g1, . . . ,gm. Next, using

the algorithm for the second section of the Orthogonal Vector Game with Hints set with initial memory

Message and the vectors g1, . . . ,gm as responses of the oracle, one can inductively compute the queries

x1, . . . ,xm. Last, Y is a deterministic function of xi,gi, i ∈ [m] and Message. This ends the claim that

there is a function φ such that Y = φ(Message,G,V , j, c). Now by the data processing inequality,

I(A′;Y | G,V , j, c) ≤ I(A′;Message | G,V , j, c) ≤ H(Message | G,V , j, c) ≤M. (9)
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In the last inequality we used the fact that Message uses at most M bits. Now, we have that

I(A′;Y | G,V , j, c) = H(A′ | G,V , j, c)−H(A′ | Y ,G,V , j, c). (10)

In the next steps we bound the two terms. We start with the second term of the right hand side of Eq (10)

using similar arguments to the proof given in [1]. Let E be the event when the Player succeeds at Game

2. Now consider the case when Y is a winning matrix. Then we have ‖Ayi‖∞ ≤ α for all i ≤ k. As

a result, any line a of A′ satisfies ‖Y ⊤a‖∞ ≤ α. Further, we have that ‖PSpan(yj ,j<i)⊥(yi)‖ ≤ β for

all i ≤ k. By Lemma 22, there exist ⌈k/5⌉ orthonormal vectors Z = [z1, . . . ,z⌈k/5⌉] such that for any

x ∈ R
d one has ‖Z⊤x‖∞ ≤

(√
d
β

)5/4
‖Y ⊤x‖∞. In particular, all lines a of A′ satisfy

‖Z⊤a‖∞ ≤
(√

d

β

)5/4

α ≤ 1

2
,

where we used the hypothesis in the parameters α and β. Now by Lemma 12, one has

∣

∣

∣

∣

{

a ∈ {±1}d : ‖Z⊤a‖∞ ≤
1

2

}∣

∣

∣

∣

≤ 2dPh∼U({±1}d)

(

‖Z⊤h‖∞ ≤
1

2

)

≤ 2d−cH⌈k/5⌉.

Therefore, we proved that if Y ′ is a winning vector, H(A′ | Y = Y ′) ≤ (n − m)(d − cHk/5).
Otherwise, if Y ′ loses, we can directly use H(A′ | Y = Y ′) ≤ (n −m)d. Combining these equations

gives

H(A′ | Y ,G,V , j, c) ≤ H(A′ | Y )

≤ P(Ec)(n −m)d+ P(E)(n −m)(d− cHk/5)
≤ (n−m)(d− P(E)cHk/5).

Next, we turn to the first term of the right-hand side of Eq (10).

H(A′ | G,V , j, c) = H(A | G,V , j, c) = H(A | V )− I(A;G, j, c | V )

≥ H(A | V )−H(G, j, c)

≥ H(A | V )−md−m log(2m)−m log(d2)

= H(A)− I(A;V )−md− 3m log(2d)

= (n−m)d− 3m log(2d)− I(A;V ).

In the second inequality, we use the fact that G uses md bits and j can be stored with m log(2m) bits.

Now by the chain rule,

I(A;V ) =
∑

i≤m

I(A;wi | w1, . . . ,wi−1).

Now if wi = vl, recalling that the vectors wi′ = vl′ are ordered by increasing index of l′, we have

I(A;wi | w1, . . . ,wi−1) = H(wi | w1, . . . ,wi−1)−H(wi | A,w1, . . . ,wi)

≤ H(wi)−H(wi | A,w1, . . . ,wi,xl,1, . . . ,xl,rl)

= log |Dδ| −H(wi | xl,1, . . . ,xl,rl).
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In the last equality, we used the fact that if bl,1, . . . , bl,rl are the resulting vectors from the Gram-Schmidt

decomposition of xl,1, . . . ,xl,rl , yl is generated uniformly in Sd−1 ∩ {y : ∀r ≤ rl, |b⊤l,ry| ≤ d−3}
independently from the past history, and vl = φδ(yl). Now by Lemma 13, we know that

Pz∼U(Sd−1)

(

∀r ≤ rl, |b⊤l,rz| ≤ d−3
)

≥ 1

ed
−4
d3k

.

As a result, for any bj(δ) ∈ Dδ, one has

P(wi = bj(δ) | xl,1, . . . ,xl,rl) ≤
Pz∼U(Sd−1)(z ∈ Vj(δ))

Pz∼U(Sd−1)

(

∀r ≤ rl, |b⊤l,rz| ≤ d−3
) ≤ ed

−4

d3k

|Dδ|
,

where we used the fact that each cell has the same area. In particular, this shows that

H(wi | xl,1, . . . ,xl,rl) = Eb∼wi|xl,1,...,xl,rl
[− log pwi|xl,1,...,xl,rl

(b)] ≥ log

( |Dδ|
ed−4d3k

)

.

Hence,

I(A;wi | w1, . . . ,wi−1) ≤ 3k log d+ d−4 log e.

Putting everything together gives

I(A′;Y | G,V , j) ≥ (n−m)d− 3m log(2d) − 3km log d− 2md−4 − (n−m)(d− P(E)cHk/5)
≥ cH

10
k(n−m)− 3km log d− 1− 3d log(2d),

where in the last equation we used d ≥ 2. Together with Eq (9), this implies

m ≥ cHkn/10−M − 1− 3d log(2d)

k(3 log d+ cH/10)
.

As a result, since k ≥ 20M+3d log(2d)+1
cHn and n ≥ d/4, we obtain

m ≥ cHn

60 log d+ 2cH
≥ cH

8(30 log d+ cH)
d.

This ends the proof of the proposition. �

We are now ready to prove the main result.

Proof of Theorem 1 We set n = ⌈d/4⌉ and k = ⌈20M+3d log(2d)+1
cHn ⌉. By Proposition 8, with probability

at least 1 − C√log d/d2, the procedure is consistent with a first-order oracle for convex optimization.

Hence, since the functions FA,v,P,L are
√
d-Lipschitz, any M -bit algorithm guaranteed to solve convex

optimization within accuracy ǫ = η/(2d) = 1/d4 for 1-Lipschitz functions, yields an algorithm that

is successful for the optimization procedure with probability at least 1 − C
√
log d/d2 and precision

ǫ
√
d = η/(2

√
d). Suppose that it uses at most Q queries. Then, by Proposition 11, there is a strategy

for Game 2 for parameters (d, k, ⌈Q/pmax⌉ + 1,M,α = 2η
γ1
, β = γ2

4 ) in which the Player wins with

probability at least 1− C ′√log d/d. Now for d large enough, this probability is at least 1/2. Further,

2η

γ1

(

4
√
d

γ2

)5/4

≤ (4/3)5/4

6
ηd3 ≤ 1

2
.
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Hence, by Proposition 14, one has

⌈Q/pmax⌉+ 1 ≥ cH
8(30 log d+ cH)

d.

Because pmax = Θ((d/k)1/3 log−2/3 d), this implies

Q = Ω

(

(d/k)1/3d

log5/3 d

)

= Ω

(

d5/3

(M + log d)1/3 log5/3 d

)

.

In particular, if M = d1+δ for δ ∈ [0, 1], the number of queries is Q = Ω̃(d1+(1−δ)/3). �

4 Memory-constrained feasibility problem

4.1 Defining the feasibility procedure

Similarly to Section 3, we pose n = ⌈d/4⌉. Also, for any matrix A ∈ {±1}n×d, we use the same

functions gA and g̃A. We use similar techniques as those we introduced for the optimization problem.

However, since in this case, the separation oracle only returns a separating hyperplane, without any

value considerations of an underlying function, Procedure 1 can be drastically simplified, which leads to

improved lower bounds.

Let η0 = 1/(24d2), η1 = 1
2
√
d

, δ = 1/d3, and k ≤ d/3 − n be a parameter. Last, let pmax =

⌊(cd,1d− 1)/(k − 1)⌋, where cd,1 is the same quantity as in Eq (3). The feasibility procedure is defined

in Procedure 4. The oracle first randomly samples A ∼ U({±1}n×d) and v0 ∼ U(Dδ). This matrix

and vector are then fixed in the rest of the procedure. Whenever the player queries a point x such that

‖Ax‖∞ > η0 (resp. v⊤
0 x > −η1), the oracle returns g̃A(x) (resp. v0). All other queries are called

informative queries. With this definition, it now remains to define the separation oracle on informative

queries. The oracle proceeds by periods in which the behavior is different. In each period p, the oracle

constructs vectors vp,1, . . . ,vp,k−1 inductively and keeps in memory some queries ip,1, . . . , ip,k that will

be called exploratory. The first informative query t will be the first exploratory query and starts period 1.

Given a new query xt,

1. If ‖Ax‖∞ > η0, the oracle returns g̃A(xt).

2. If v⊤
0 xt > −η1, the oracle returns v0.

3. If xt was queried in the past sequence, the oracle returns the same vector that was returned previ-

ously.

4. Otherwise, let p be the index of the current period and let vp,1, . . . ,vp,l be the vectors from the cur-

rent period constructed so far, together with their corresponding exploratory queries ip,1 . . . , ip,l <
t. Potentially, if p = 1 one may not have defined any such vectors at the beginning of time t. In

this case, let l = 0.

(a) If max1≤l′≤l v
⊤
p,l′xt > −η1 (with the convention max∅ = −∞), the oracle returns vp,l′

where l′ = argmaxl≤r v
⊤
p,lxt. Ties are broken alphabetically.
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(b) Otherwise, if l < k−1, we first define ip,l+1 = t. Then, let bp,1, . . . , bp,l+1 be the result from

the Gram-Schmidt decomposition of xip,1 , . . . ,xip,l+1
and let yp,l+1 be a sample of the distri-

bution obtained by the uniform distribution yp,l+1 ∼ U(Sd−1∩
{

z ∈ R
d : |b⊤p,rz| ≤ 1

d3 ,∀r ≤ l + 1
}

).
We then pose vp,l+1 = φδ(yp,l+1). Having defined this new vector, the oracle returns vp,l.

We then increment l.

(c) Otherwise, if r = k, we define ip,k = ip+1,1 = t. If p+ 1 ≤ pmax, this starts the next period

p + 1. As above, let bp+1,1 be the result of the Gram-Schmidt decomposition of xip+1,1
and

sample yp+1,1 according to a uniform yp+1,1 ∼ U(Sd−1 ∩
{

z ∈ R
d : |b⊤p+1,1z| ≤ 1

d3

}

). We

then pose vp+1,1 = φδ(yp+1,1) and the oracle returns vp+1,1. We can then increment p and

reset l = 1.

The above construction ends when the period pmax is finished. At this point, the oracle has defined the

vectors vp,l for all p ≤ pmax and l ≤ k. We then define the successful set as

QA,v =

{

x ∈ Bd(0, 1) : ‖Ax‖∞ ≤ η0,v⊤
0 x ≤ −η1, max

p≤pmax,l≤k−1
v⊤
p,lx ≤ −η1

}

.

From now on, the procedure uses any separation oracle for QA,v as responses to the algorithm, while

making sure to be consistent with previous oracle reponses if a query is exactly duplicated. We now

define what we mean by solving the above feasibility procedure.

Definition 15. Let alg be an algorithm for the feasibility problem. When running alg with the responses

of the feasibility procedure, we denote by v the set of constructed vectors and x⋆(alg) the final answer

returned by alg. We say that an algorithm alg is successful for the feasibility procedure with probability

q ∈ [0, 1], if taking A ∼ U({±1}n×d), with probability at least q over the randomness of A and of the

procedure, x⋆(alg) ∈ QA,v.

In the rest of this section, we first relate this feasibility procedure to the standard feasibility problem,

then prove query lower bounds to solve the feasibility procedure.

4.2 Reduction from the feasibility problem to the feasibility procedure

In the next proposition, we check that the above procedure indeed corresponds to a valid feasibility

problem.

Proposition 16. On an event of probability at least 1− C√log d/d, the procedure described above is a

valid feasibility problem. More precisely, the following hold.

• There exists x̄ ∈ Bd(0, 1) such that ‖Ax̄‖∞ = 0, v⊤
0 x̄ ≤ −4η1, and

max
p≤pmax,l≤k−1

v⊤
p,lx̄ ≤ −4η1.

• Let ǫ = min{η0/
√
d, η1}/2. Then, Bd

(

x̄− ǫ x̄
‖x̄‖ , ǫ

)

⊆ Bd(0, 1) ∩Bd(x̄, 2ǫ) ⊆ QA,v.

• Throughout the run of the feasibility problem, the separation oracle always returned a valid cut,

i.e., for any iteration t, if xt denotes the query and gt is the returned vector from the oracle, one

has

∀x ∈ QA,v, 〈gt,xt − x〉 > 0.

Further, responses are consistent: if xt = xt′ , the responses of the procedure at times t and t′

coincide.
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Input: d, k, pmax, algorithm alg

1 Sample A ∼ U({±1}n×d) and v0 ∼ U(Dδ).;
2 Initialize the memory of alg to 0 and let p = 1, l = 0.;

3 for t ≥ 1 do

4 Run alg with current memory to obtain a query xt;

5 if ‖Axt‖ > η0 then return g̃A(xt) as response to alg ;

6 else if v⊤
0 xt > −η1 then return v0 as response to alg ;

7 else if Query xt was made in the past then return the same vector that was returned for xt ;

8 else

9 if max1≤l′≤l v
⊤
p,l′xt > −η1 then

10 return vp,l′ where l′ = argmaxl≤r v
⊤
p,lxt.

11 else if l < k − 1 then

12 Let ip,l+1 = t and compute Gram-Schmidt decomposition bp,1, . . . , bp,l+1 of

xip,1 , . . . ,xip,l+1
.;

13 Sample yp,l+1 uniformly on Sd−1 ∩ {z ∈ R
d : |b⊤p,l′z| ≤ d−3,∀l′ ≤ l + 1} and define

vp,l+1 = φδ(yp,l+1).;

14 return vp,l+1 as response to alg and increment l ← l + 1.

15 else if p+ 1 ≤ pmax then

16 Set ip,k = ip+1,1 = t and compute the Gram-Schmidt decomposition bp+1,1 of xip+1,1
;

17 Sample yp+1,1 uniformly on Sd−1 ∩ {z ∈ R
d : |b⊤p+1,1z| ≤ d−3} and define

vp+1,1 = φδ(yp+1,1).

18 return vp+1,1 as response to alg, increment p← p+ 1 and reset l = 1.

19 else Set ipmax,k = t and break the for loop;

20 end

21 for t′ ≥ t do Use any separation oracle for QA,v consistent with previous responses ;

Procedure 4: The feasibility procedure for algorithm alg

We use a similar proof to that of Proposition 9.

Proof For convenience, we rename vp,l = v(p−1)(k−1)+l . Also, let lmax = pmax(k − 1) ≤ cd,1d − 1.

Next, let Cd =
√
40lmax log d. We define the vector

x̄ = − 1

Cd

lmax
∑

l=0

PSpan(ai,i≤n)⊥(vl).

Since lmax ≤ pmax(k − 1) ≤ cd,1d − 1, the same arguments as in the proof of Proposition 9 show that

on an event E of probability at least 1−C√log d/d, we have ‖x̄‖ ≤ 1 and

max
0≤l≤lmax

v⊤
l x̄ ≤ −

1

40
√

(lmax + 1) log d
≤ − 2√

d
= −4η1,

where in the second inequality we used lmax ≤ cd,1d − 1. Now by construction, one has ‖Ax̄‖∞ = 0.

This ends the proof of the first claim of the proposition. We now turn to the second claim, which is imme-

diate from the fact that x 7→ ‖Ax‖∞ is
√
d-Lipschitz and both x 7→ v⊤

0 x and x 7→ maxp≤pmax,l≤k v
⊤
p,lx

are 1-Lipschitz. Therefore, Bd(x̄−ǫx̄/‖x̄‖, ǫ) ⊆ Bd(0, 1)∩Bd(x̄, 2ǫ) ⊂ QA,v. It now remains to check
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that the third claim is satisfied. It suffices to check that this is the case during the construction phase of

the feasibility procedure. By construction of QA,v ⊂ {x : ‖Ax‖∞ ≤ η0}.
Hence, it suffices to check that for informative queries xt, the returned vectors gt are valid separation

hyperplanes. By construction, these can only be either v0 or vp,l for p ≤ pmax, l ≤ k− 1. We denote by

w this vector. Let t′ be the first time xt was queried. There are two cases. Either w was not constructed

at time t′, in which case, by construction this means that we are in scenario (2) or (4a). Both cases

imply w⊤xt > −η1. Hence, w which is returned by the procedure is a valid separation hyperplane.

Now suppose that w = vp,l was constructed at time t′—scenarios (4b) or (4c). By construction, one has

|b⊤p,ryp,l| ≤ d−3 for all r ≤ l. Decomposing xt = xip,l = αbp,1 + . . .+ αlbp,l, we obtain

|x⊤
t yp,l| ≤

‖α‖1
d3
≤ 1

d2
√
d
.

As a result, y⊤
p,lxt ≥ −1/(d2

√
d). Now because vp,l = φδ(yp,l), we have ‖vp,l − yp,l‖ ≤ δ. Hence, for

any d ≥ 2,

w⊤xt ≥ −1/(d2
√
d)− δ > −η1.

Hence, w was a valid separation hyperplane. The last claim that the responses of the procedure are con-

sistent over time is a direct consequence from its construction. This ends the proof of the proposition. �

As a simple consequence of this result, solving the feasibility problem is harder than solving the

feasibility procedure with high probability.

Proposition 17. Let alg be an algorithm that solves the feasibility problem with accuracy ǫ = 1/(48d2
√
d).

Then, it solves the feasibility procedure with probability at least 1− C√log d/d.

Proof Let E be the event of probability at least 1−C√log d/d defined in Proposition 16. We show that

on E , alg solves the feasibility procedure. On E , the feasibility procedure emulates is a valid feasibility

oracle. Further, on E , the successful set contains a closed ball of radius ǫ. As a result, on E , alg finds a

solution to the feasibility problem emulated by the procedure. �

Next, we show that it is necessary to finish the pmax periods to solve the feasibility procedure.

Proposition 18. Fix an algorithm alg. Then, if A denotes the event when alg succeeds and B denotes

the event when the procedure ends period pmax with alg, then E ⊆ B.

Proof Consider the case when the period pmax was not ended. Let x⋆ denote the last query performed

by alg. We consider the scenario in which x⋆ fell. Let t be the first time when alg submitted query

x⋆. For any of the scenarios (1), (2), or (4a), by construction of QA,v, we already have xt /∈ QA,v. It

remains to check scenarios (4b) and (4c) for which the procedure constructs a new vector vp,l, where p
is the index of the period of t and ip,1, . . . , ip,l = t are the previous exploratory queries in period p. We

decompose xt = xip,l = α1bp,1 + αlbp,l. Now by construction,

|x⊤
t yp,l| = |x⊤

ip,l
yp,l| ≤

‖α‖1
d3
≤ 1

d2
√
d
.

As a result, x⊤
t vp,l ≥ −|x⊤

t yp,l| − δ ≥ −d−2.5 − d−3 > −η1, for any d ≥ 2. Thus, xt = x⋆ /∈ QA,v.

This shows that in order to succeed at the feasibility procedure, an algorithm needs to end all pmax peri-

ods. �
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4.3 Reduction to the Orthogonal Vector Game with Hints.

The remaining piece of our argument is to show that solving the feasibility procedure is harder than

solving the Orthogonal Vector Game with Hints, Game 2.

Proposition 19. Let A ∼ U({±1}n×d). If there exists an M -bit algorithm that solves the feasibility

problem described above using mpmax queries with probability at least q over the randomness of the

algorithm, choice of A and the randomness of the separation oracle, then there is an algorithm for Game

2 for parameters (d, k,m,M,α = η0
η1
, β = η1

2 ), for which the Player wins with probability at least q
over the randomness of the player’s strategy and A.

Proof Let alg be an M -bit algorithm solving the feasibility problem with mpmax queries with probabil-

ity at least q. In Algorithm 5, we describe the strategy of the player in Game 2.

Input: d, k, pmax, m, algorithm alg

Part 1: Strategy to store Message knowing A;

1 Initialize the memory of alg to be 0.;

2 Submit ∅ to the Oracle and use the response as v0.;

3 Run alg with the optimization procedure knowing A and v0 until the first exploratory query xi1,1 .

4 for p ∈ [pmax] do

5 Let Memoryp be the current memory state of alg and ip,1 the current iteration step. ;

6 Run alg with the feasibility procedure until period p ends at iteration step ip+1,1. If alg stopped

before, return the strategy fails. When needed to sample a unit vector vp′,l′ , submit vectors

xip′,1 , . . .xip′,l′ to the Oracle. We use the corresponding response of the Oracle as vp′,l′ .;

7 if ip+1,1 − ip,1 ≤ m then

8 Set Message = Memoryp
9 end

10 for Remaining queries to perform to Oracle do Submit arbitrary query, e.g. ∅ ;

11 if Message has not been defined yet then return The strategy fails;

12 Submit g̃A,v to the Oracle as defined in Eq (11).;

Part 2: Strategy to make queries;

13 Set the memory state of alg to be Message.;

14 for i ∈ [m] do

15 Run alg with current memory to obtain a query zi.;

16 Submit zi to the Oracle from Game 2, to get response (gi, si).;
17 Compute g̃i using zi, gi and si as defined in Eq (12) and pass g̃i as response to alg.;

18 end

Part 3: Strategy to return vectors;

19 for l ∈ [k] do Set il to be the index i of the first query zi for which si = l, if it exists ;

20 if index ik has not been defined yet then

21 With the current memory of alg find a new query zm+1 and set ik = m+ 1.;

22 return
{

zi1

‖zi1
‖ , . . . ,

zik

‖zik
‖

}

to the Oracle.

Algorithm 5: Strategy of the Player for the Orthogonal Vector Game with Hints

In the first part of the strategy, the player observes A. Then they proceed to simulate the feasibility

problem with alg using parameters A. When needed to sample a vector vp,l (resp. v0), the player
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submits the corresponding queries xip,1 , . . . ,xip,l (resp. ∅) useful to define vp,l. The player then takes

the response given by the Oracle as that vector vp,l (resp. v0), which simulates exactly a run of the

feasibility procedure. Further, since 1 + pmax(k − 1) ≤ d, the player does not run out of queries.

Importantly, during the run, the player keeps track of the length ip,k − ip,1 of period p. The first time

we encounter a period p with length at most m, we set Message = Memoryp, the memory state of alg
at the beginning of period p. If there is no such period, the strategy fails. Also, if alg stopped before

ending period pmax, the strategy fails. Next, the algorithm submits the following function g̃A,v to the

Oracle. Since the responses of the feasibility procedure are consistent over time, we adopt the following

notation. For a previously queried vector x of alg, we denote g(x) the vector which was returned to alg
during the first part (lines 3-9 of Algorithm 5).

g̃A,v : x 7→























(0, 1) if x was never queried in the first part,

(ai, 1) ow. and if g(x) ∈ {±ai}, i ≤ n,
(v0, 2) ow. and if g(x) = v0,

(vp′,l′ , 2 + l′1p′=p + k1p′=p+1,l′=1) ow. and if g(x) = vp′,l′, p
′ ≤ pmax, l ≤ k − 1.

(11)

Intuitively, the first component of g̃ gives the returned vector in the first period, at the exception that we

always return ai instead of {±ai}. The second term has values in [2 + k ≤ d2]. Hence, the submitted

function is valid.

Next, in the second part of the algorithm, the player proceeds to simulate a run the feasibility proce-

dure with alg on period p. To do so, we first set the memory state of alg to Message. Each new query zi

is submitted to the Oracle of Game 2 to get a response (gi, si). Then, we compute g̃i as follows

g̃i =

{

gi if si ≥ 2,

sign(g⊤
i zi)gi if si = 1.

(12)

One can easily check that g̃i corresponds exactly to the response that was passed to alg in the first part

of the strategy. The player then passes g̃i to alg so that it can update its state. We repeat this process

for m steps. Further, the player can also keep track of the exploratory queries: the index il of the first

response satisfying si = 2 + l for l ≤ k − 1 (resp. si = 2 + k)is the exploratory query which led to the

construction of vp,l (resp. vp+1,1) in the first part. Last, we check if the last index ik was defined. If not,

we pose ik = m + 1 and let zm+1 be the next query of alg with the current memory. The player then

returns the vectors
zi1

‖zi1
‖ , . . . ,

zik

‖zik
‖ . This ends the description of the player’s strategy.

By Proposition 18, on an event E of probability at least q, the algorithm alg succeeds and ends period

pmax. As a result, similarly as in the proof of Proposition 11, since alg makes at most mpmax queries,

and there are pmax periods, there must be a period of length at most m. Hence the strategy never fails at

this phase of the player’s strategy on the event E . Further, we already checked that in the second phase,

the vectors g̃i passed to alg coincide exactly with the responses passed to alg in the first part. Thus,

this shows that during the second part, the player simulates exactly the run of the feasibility problem

on period p. More precisely, the queries coincide with the queries in the feasibility problem at times

ip,1, . . . ,min{ip,k, ip,1 +m− 1}. Now because the first part succeeded on E , we have ip,k ≤ ip,0 +m.

Therefore, if ik has not yet been defined, this means that we had ip,k = ip,1 +m. Hence, the next query

with the current memory zm+1 is exactly the query xip,k for the feasibility problem. This shows that the

vectors zi1 , . . . ,zik coincide exactly with the vectors xip,1 , . . . ,xip,k when running alg on the feasibility

problem in the first part.

We now show that the returned vectors are successful for Game 2. By construction, xip,1 , . . . ,xip,k

are all informative. In particular, ‖Axip,l‖∞ ≤ η0 for all 1 ≤ l ≤ k. Further, these queries did not fall
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in scenario (2), hence v⊤
0 xip,l < −η1, which implies ‖xip,l‖ > η1 for all l ≤ k. As a result,

‖Axip,l‖∞
‖xip,l‖

≤ η0
η1
.

Next fix l ≤ k − 1. By construction of yp,l,

‖PSpan(xi
p,l′

,l′≤l)(yp,l)‖2 =
∑

l′≤l

|b⊤p,l′yp,l|2 ≤
k

d6
≤ 1

d5
.

Hence,

‖vp,l − PSpan(xi
p,l′

,l′≤l)⊥(yp,l)‖ ≤ ‖PSpan(xi
p,l′

,l′≤l)(yp,l)‖+ δ ≤ 1

d5
+ δ.

As a result, since x⊤
p,l+1vp,l < −η1, we have

‖PSpan(xi
p,l′

,l′≤l)⊥(xp,l+1)‖ ≥ |x⊤
p,l+1PSpan(xi

p,l′
,l′≤l)⊥(yp,l)‖ > η1 −

1

d5
− δ ≥ η1

2
.

This shows that the returned vectors
xip,1

‖xip,1
‖ , . . . ,

xip,k

‖xip,k
‖ are successful for Game 2 with parameters

α = η0
η1

and β = η1
2 . This ends the proof that strategy succeeds on E for these parameters, which ends

the proof of the proposition. �

We are now ready to prove the main result.

Proof of Theorem 2 Suppose that there is an algorithm alg for solving the feasibility problem to opti-

mality ǫ = 1/(48d2
√
d) with memoryM and at mostQ queries. Let k = ⌈20M+3d log(2d)+1

cHn ⌉. By Propo-

sition 17, it solves the feasibility procedure with parameter k with probability at least 1 − C√log d/d.

By Proposition 19 there is an algorithm for Game 2 that wins with probability 1/3 with m = ⌈Q/pmax⌉
and parameters α = η0/η1 and β = η1/2. Now we check that

α

(√
d

β

)5/4

≤ 12d2η0 =
1

2
.

Hence, by Proposition 14, we have

m ≥ cH
8(30 log d+ cH)

d.

This shows that

Q ≥ Ω

(

pmax
d

log d

)

= Ω

(

d2

k log3 d

)

= Ω

(

d3

(M + log d) log3 d

)

.

This implies that for a memory M = d2−δ with 0 ≤ δ ≤ 1 the number of queries is Q = Ω̃(d1+δ). �

Acknowledgments

This work was partly funded by ONR grant N00014-18-1-2122 and AFOSR grant FA9550-19-1-0263.

32



References

[1] Annie Marsden, Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Efficient convex optimization

requires superlinear memory. In Conference on Learning Theory, pages 2390–2430. PMLR, 2022.
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A Concentration bounds

The following result gives concentration bounds for the norm of the projection of a random unit vector

onto linear subspaces.

Proposition 20. Let P be a projection in R
d of rank r and let x ∈ R

d be a random vector sampled

uniformly on the unit sphere x ∼ U(Sd−1). Then, for every t > 0,

max
{

P

(

‖P (x)‖2 − r

d
≥ t
)

,P
(

‖P (x)‖2 − r

d
≤ −t

)}

≤ e−dt2 .
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Further, if r = 1 and d ≥ 2,

P

(

‖P (x)‖ ≥
√

t

d− 1

)

≤ 2
√
te−t/2.

Proof First, by isometry, we can assume that P is the projection onto the coordinate vectors e1, . . . er.

Then, let y ∼ N (0, 1) be a normal vector. Note that x = y
‖y‖ ∼ U(Sd−1). Further,

‖x‖2 ≥ r

d
+ t ⇐⇒

(

1− r

d
− t
)

r
∑

i=1

y2i ≥
(r

d
+ t
)

d
∑

i=r+1

y2i .

Now note that Z1 =
∑r

i=1 y
2
i and Z2 =

∑d
i=r+1 y

2
i are two independent random chi squared variables

of parameters r and d− r respectively. Recalling that the moment generating function of Z ∼ χ2(k) is

E[esZ ] = (1− 2s)−k/2 for s < 1/2. Therefore, for any

− 1

2(r/d+ t)
< s <

1

2(1 − r/d− t) , (13)

one has

P

(

‖P (x)‖2 − r

d
≥ t
)

≤ E

[

exp
(

s
(

1− r

d
− t
)

Z1 − s
(r

d
+ t
)

Z2

)]

=

[

1− 2s
(

1− r
d − t

)]−r/2

[

1− 2s
(

r
d + t

)]−(d−r)/2
.

Now let s = 1
2

(

1−r/d
1−r/d−t −

r/d
r/d+t

)

, which satisfies Eq (13). The previous equation readily yields

P

(∣

∣

∣‖P (x)‖2 − r

d

∣

∣

∣ ≥ t
)

≤ exp

(

−d
2
dKL

(r

d
;
r

d
+ t
)

)

≤ e−dt2 .

In the last inequality we used Pinsker’s inequality dKL(r/d; r/d+ t) ≥ 2δ(B(r/d),B(d/r+ t))2 = 2t2,

where B(q) is the Bernouilli distribution of parameter q. Replacing P with Id−P and r with d−r gives

the other inequality

P

(

‖P (x)‖2 − r

d
≤ −t

)

≤ e−dt2 .

This gives first claim. For the second claim, supposing that r = 1 < d, from the above equation, we have

P

(

‖P (x)‖2 ≥ t

d

)

≤ exp

(

−d
2
dKL

(

1

d
;
t

d

))

=
√
t

(

1− t
d

1− 1
d

)(d−1)/2

≤
√
2te−t(d−1)/(2d) .

Thus,

P

(

‖P (x)‖2 ≥ t

d− 1

)

≤
√

2(d− 1)

d

√
te−t/2,

which ends the proof of the proposition. �

Next, we need the following lemma which gives a concentration inequality for discretized samples

in Dd and approximately perpendicular to k ≤ d/3− 1 vectors.
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Lemma 21. Let 0 ≤ k ≤ d/3 − 1 and x1, . . . ,xk ∈ Bd(0, 1) be k orthonormal vectors in the unit

ball, and x ∈ Bd(0, 1). Denote by µ the distribution on the unit sphere corresponding to the uniform

distribution y ∼ U(Sd−1 ∩ {w ∈ R
d : |x⊤

i w| ≤ d−3,∀i ≤ k}). Let y ∼ µ. Then, for t ≥ 2,

P

(

|x⊤y| ≥
√

t

d
+

1

d2

)

≤ 2
√
te−t/3.

Further, let δ ≤ 1 and z = φδ(y). Then for t ≥ 4,

P

(

|x⊤z| ≥
√

t

d
+

1

d2
+ δ

)

≤ 2
√
te−t/3.

Proof We use the same notations as above and denote by E = {|x⊤
i y| ≤ d−3,∀i ≤ k} the event

considered and y ∼ µ. We decompose y = α1x1+. . .+αkxk+y′, where y′ ∈ Span(xi, i ≤ k)⊥ := E.

Now note that y′

‖y′‖ is a uniformly random unit vector in E. As a result, using Proposition 20, we obtain

for any t ≥ 2,

P

(

|x⊤y′| ≥
√

t

d− k − 1

)

= P

(

|PE(x)
⊤y′| ≥

√

t

d− k − 1

)

≤ 2
√
te−t/2.

Also, because by definition of µ, we have |αi| ≤ d−3 for all i ≤ k, we obtain |x⊤y| ≤ k
d3 + |x⊤y′| ≤

1
d2

+ |x⊤y′|. As a result, using the fact that d− k − 1 ≥ 2d/3, the previous equation shows that

P

(

|x⊤y| ≥
√

3t

2d
+

1

d2

)

≤ P

(

|x⊤y′| ≥
√

t

d− k − 1

)

≤ 2
√
te−t/2.

Next, we use the fact that ‖z − y‖ = ‖φδ(y)− y‖ ≤ δ to obtain

P

(

|x⊤z| ≥
√

t

d
+

1

d2
+ δ

)

≤ P

(

|x⊤y| ≥
√

t

d
+

1

d2

)

≤ 2
√
te−t/3.

This ends the proof of the lemma. �

B An improved result on robustly-independent vectors

The following lemma serves the same purpose as [1, Lemma 34]. Namely, from successful vectors of the

Game 2, it allows to recover an orthonormal basis that is still approximately in the nullspace of A. The

following version gives a stronger version that improves the dependence in d of our chosen parameters.

Lemma 22. Let δ ∈ (0, 1] and suppose that we have r ≤ d unit norm vectors y1, . . . ,yr ∈ R
d. Suppose

that for any i ≤ k,

‖PSpan(yj ,j<i)⊥(yi)‖ ≥ δ.
Let Y = [y1, . . . ,yr] and s ≥ 2. There exists ⌈r/s⌉ orthonormal vectors Z = [z1, . . . ,z⌈r/s⌉] such

that for any a ∈ R
d,

‖Z⊤a‖∞ ≤
(√

d

δ

)s/(s−1)

‖Y ⊤a‖∞.

37



Proof Let B = (b1, . . . , br) be the orthonormal basis given by the Gram-Schmidt decomposition of

y1, . . . ,yr. By definition of the Gram-Schmidt decomposition, we can write Y = BC where C is an

upper-triangular matrix. Further, its diagonal is exactly diag(‖PSpan(yl′ ,l
′<l)⊥(yl)‖, l ≤ r). Hence,

det(Y ) = det(C) =
∏

l≤r

‖PSpan(yl′ ,l
′<l)⊥(yl)‖ ≥ δr.

We now introduce the singular value decomposition Y = Udiag(σ1, . . . , σr)V
⊤, where U ∈ R

d×r

and V ∈ R
r×r have orthonormal columns, and σ1 ≥ . . . ≥ σr. Next, for any vector z ∈ R

d, since the

columns of Y have unit norm,

‖Y z‖2 ≤
∑

l≤r

|zl|‖yl‖2 ≤ ‖z‖1 ≤
√
d‖z‖2.

In the last inequality we used Cauchy-Schwartz. Therefore, all singular values of Y are upper bounded

by σ1 ≤
√
d. Thus, with r′ = ⌈r/s⌉

δr ≤ det(Y ) =

r
∏

l=1

σl ≤ d(r
′−1)/2σr−r′+1

r′ ≤ dr/2sσ(s−1)r/s
r′ ,

so that σr′ ≥ δs/(s−1)/d1/(2s). We are ready to define the new vectors. We pose for all i ≤ r′, zi = ui

the i-th column of U . These correspond to the r′ largest singular values of Y and are orthonormal by

construction. Then, for any i ≤ r′, we also have zi = ui =
1
σi
Y vi where vi is the i-th column of V .

Hence, for any a ∈ R
d,

|z⊤
i a| =

1

σi
|v⊤

i Y
⊤a| ≤ ‖vi‖1

σi
‖Y ⊤a‖∞ ≤

d1/2+1/(2s)

δs/(s−1)
‖Y ⊤a‖∞.

This ends the proof of the lemma. �
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