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The increasing availability of real-time data has fueled the prevalence of algorithmic bidding (or autobidding)

in online advertising markets, and has enabled online ad platforms to produce signals through machine

learning techniques (i.e., ML advice) on advertisers’ true perceived values for ad conversions. Previous works

have studied the auction design problem while incorporating ML advice through various forms to improve

total welfare of advertisers. Yet, such improvements could come at the cost of individual bidders’ welfare,

consequently eroding fairness of the ad platform. Motivated by this, we study how ad platforms can utilize

ML advice to improve welfare guarantees and fairness on the individual bidder level in the autobidding world.

We focus on a practical setting where ML advice takes the form of lower confidence bounds (or confidence

intervals). We motivate a simple approach that directly sets such advice as personalized reserve prices

when the platform consists of value-maximizing autobidders who are subject to return-on-ad spent (ROAS)

constraints competing in multiple parallel auctions. Under parallel VCG auctions with ML advice-based

reserves, we present a worst-case welfare lower-bound guarantee for individual agents, and show that platform

fairness is positively correlated with ML advice quality. We also present an instance that demonstrates our

welfare guarantee is tight. Further, we prove an impossibility result showing that no truthful, and possibly

randomized mechanism with anonymous allocations and ML advice as personalized reserves can achieve

universally better fairness guarantees than VCG when coupled with ML advice of the same quality. Finally,

we extend our fairness guarantees with ML advice to generalized first price (GFP) and generalized second

price (GSP) auctions.

Key words : Fairness, mechanism design, machine-learned advice, welfare maximization

1. Introduction

Autobidding, namely the procedure of adopting automated algorithms to procure ad slots in online

ad auctions, has become the prevalent mode of bidding in online advertising markets, contributing

to more than 88% of total online advertising traffic (Shelagh Dolan 2019). Autobidding is generally

conducted by autobidders who bid programatically in online ad auctions on behalf of advertisers

to optimize for their high-level goals, such as maximizing total clicks/views or return on ad spent
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(ROAS). In such autobidding environments, online ad platforms generally seek to increase total

welfare, or, in other words, total advertiser value for conversions among all bidders. Despite not

knowing the true values of bidders, ad platforms can improve total welfare via carefully designing

suitable ad auction mechanisms with the aid of predictive signals generated from machine-learning

models (i.e., ML advice) such as predictions on autobidders’ perceived value for conversions. Nev-

ertheless, many real-world platforms and mechanism design literature have overlooked how these

tailored mechanisms can impact each individual bidder’s welfare. In fact, ad auctions may tend to

increase bidders’ aggregate welfare at the cost of certain individual bidders’ acquired value, con-

sequently eroding fairness of the platform. Motivated by this, we study the fairness of online ad

auctions in an autobidding world, and further investigate how platforms can utilize ML advice for

advertiser values to improve overall platform fairness.

In this work, we study a prototypical autobidding setting where autobidders compete simulta-

neously in several multi-slot auctions that are run in parallel, and aim to maximize total adver-

tiser value under return-on-ad-spent (ROAS) constraints that restrict total spend of a bidder to

be less than her total acquired value across all auctions (Aggarwal et al. 2019, Deng et al. 2021,

Balseiro et al. 2021a, Mehta 2022). For auctions that are truthful with respect to (quasi-linear) util-

ity maximizers (e.g., second-price auctions), the value-maximizing decision for an autobidder under

full information is a single bid multiplier that will be multiplied by the true values of each auction to

yield corresponding bid values (Aggarwal et al. 2019). The ad platform, on the other hand, possesses

ML advice on autobidders’ real values with a certain degree of accuracy/quality, and decides on the

auction format for the parallel auctions. Here, we restrict our attention to ML advice that takes

the form of lower confidence bounds or confidence intervals (see Definition 3.1 and corresponding

discussions), and motivate the approach to directly set such advice as personalized reserve prices.

Our definition of fairness concerns worst case guarantees for individual bidder welfare relative

to the welfare under the efficient outcome, i.e., the outcome that maximizes total welfare. In other

words, an autobidding platform is fair if in the worst-case outcome, every bidder would be able to

retain some proportion of the welfare they would have acquired under the efficient outcome, where

the higher the proportion, the fairer the platform. The overarching goal of this work is to present

theoretical welfare guarantees as a measure of platform fairness for individual bidders in the presence

of reserves derived from ML advice of certain accuracy/quality under typical auction formats such

as the Vickrey–Clarke–Groves (VCG), generalized second price (GSP), generalized first price (GFP)

auctions, etc. Our main contributions are summarized as followed.

Welfare/fairness guarantees in VCG with ML advice. To the best of our knowledge, this

work presents the first notion of individual bidder fairness in an autobidding mechanism design setup,

and presents the first welfare guarantee on the individual bidder level. We motivate the approach
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that sets lower-confidence type of ML advice on advertisers’ values as personalized approximate

reserve prices (see Section 3) with the goal to improve platform fairness. When autobidders compete

in multiple parallel VCG auctions with such advice-based approximate reserves, under any feasible

outcome (i.e. worst-case outcome), we present a welfare lower bound for each individual bidder

that increases in the quality of ML advice, and decreases in the ratio between competitors’ and

the bidder’s total values in the efficient outcome (Theorem 4.1). We also present an instance that

shows our lower bound is tight (Theorem 4.3). Together with the results in (Deng et al. 2021)

stating approximate reserves can improve total welfare in the autobidding setting, we conclude that

incorporating ML advice as personalized reserves not only increases total welfare of the platform,

but also improves fairness for bidders.

Impossibility result: VCG is the fairest among a broad class of auctions. We show an

impossibility result that says no allocation-anonymous, truthful, and possibly randomized mecha-

nism with ML advice as approximate reserves can achieve a strictly better worst-case welfare lower

bound guarantee than the VCG auction coupled with ML advice of the same quality; see Theorem

5.1. In particular, for any allocation-anonymous, truthful, and possibly randomized auction, we con-

struct an autobidding instance with approximate reserves, and show that there must be at least 1

bidder whose welfare is at most the welfare lower bound guarantee we presented under VCG (i.e.

Theorem 4.1).

Fairness guarantee extensions to GSP and GFP. We extend fairness guarantee results to

GSP and GFP auctions, and show that a similar worst-case welfare lower bound guarantee continues

to hold when autobidders submit undominated bids (Theorem 6.2). We compare these lower bound

guarantees with that of VCG in Theorem 4.1, and identify conditions under which VCG outperforms

(or underperforms) GSP/GFP in terms of fairness with the same ML advice quality.

1.1. Related Works

Mechanism design with constrained bidders. Our work is related to the general theme of mech-

anism design in the presence of constrained agents. The works Pai and Vohra (2014), Golrezaei et al.

(2021b) study revenue-optimal auction design when bidders who maximize quasi-linear utility are

constrained by budgets, and return-on-investment (ROI), respectively. Balseiro et al. (2021d) study

revenue-maximizing auctions for ROI constrained bidders under different objectives and information

structures for values and ROI targets. This work differs from these papers as we do not study new

auction formats and platform revenue-optimization, but instead presents insights into how incorpo-

rating ML advice as reserves in classic auctions like VCG, GSP and GFP can improve individual

bidder welfare. To the best of our knowledge, the most relevant works to this paper are Deng et al.

(2021), Balseiro et al. (2021a), Mehta (2022), where they consider the same auto-bidding setting
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(i.e. value-maximizers with ROAS constraints) as ours. Deng et al. (2021), Balseiro et al. (2021a),

Mehta (2022), Deng et al. (2022) all present techniques to improve price-of-anarchy bounds for

the total welfare of any feasible outcome: where Deng et al. (2021) relies on additive boosts on

bid values, Balseiro et al. (2021a), Deng et al. (2022) utilizes approximate reserve prices derived

from ML-advice, and Mehta (2022) develops randomized allocation and payment rules. Our work

distinguishes itself from these works as we focus on welfare and fairness guarantees on the indi-

vidual bidder level. We point out that our proof techniques also differ from those in Deng et al.

(2021), Balseiro et al. (2021a), Mehta (2022), Deng et al. (2022) as our individual fairness guaran-

tees require novel analyses on the value-expenditure tradeoffs individual bidders’ would face when

they are tempted to outbid others to acquire more value; see discussion in Section 4 for more details.

Exploiting machine-learned advice. ML advice has been utilized in various applications to

improve learning and decision making. For example, Wang et al. (2020) exploits ML advice to

develop algorithms for the multi-shop ski-rental problem, (Lykouris and Vassilvtiskii 2018) adopts

ML advice for the caching problem, and (Indyk et al. 2022) studies online page migration with ML

advice. However, although many works in online advertising studied predictive models for adver-

tiser values, click through rates, etc (see e.g. (Richardson et al. 2007, Lee et al. 2012, Sodomka et al.

2013)), the literature on applying such predictions (or more generally, ML advice) to the mechanism

design problem has been scarce. One related work along this direction is Munoz and Vassilvitskii

(2017), which develops a theoretical framework to optimize reserve prices in a posted price mecha-

nism by utilizing prediction inputs on bid values. In this work, we do not optimize for reserves, and

motivate the simple approach of setting reserves using ML advice. Finally, we note that our work

contributes to the area of exploiting ML advice to designing mechanisms with for improving welfare

guarantees and fairness for individual bidders.

Fairness in algorithm design and optimization. The notion of fairness considered in this

paper differs from algorithmic fairness and optimization fairness in the following sense. Algorith-

mic fairness for supervised learning concerns maintaining prediction/treatment similarity for indi-

viduals agents/groups alike; see Dwork et al. (2012), Kusner et al. (2017) for individual fairness,

Calders et al. (2009), Zliobaite (2015) for group fairness, and Kearns et al. (2019,?) for subgroup

fairness. Also see Mehrabi et al. (2021) for a comprehensive survey on fairness in ML algorithms.

On the other hand, fairness in optimization problems generally concerns decisions to be fair in a

domain-specific sense, for example, in assortment planning similar products should be offered similar

visibility Chen et al. (2022); in online matching, there should be no discrimination across individ-

ual agents Ma et al. (2021); in resource allocation, each individual should receive a non-neglible

amount of allocation Bateni et al. (2022). In this work, fairness of an autobidding platform refers

to providing worst case outcome welfare guarantees for each individual bidder, with the hope that
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every bidder can retain some proportion of welfare that she would have attained under the efficient

outcome (i.e. the outcome with total maximum welfare).

For more related works on algorithmic bidding/learning under constraints, and reserve price

optimization, we refer readers to Appendix A for an extended literature review.

2. Preliminaries

2.1. Autobidding instance

Consider a platform running an autobidding instance Θ = (N,M,A,r,v) where there are N bid-

ders bidding in M parallel position auctions Lahaie et al. (2007), Varian (2007) of the format A

(e.g. VCG, GSP, GFP etc.) that are labeled A1 . . .AM . Here, r = (ri,j) ∈ R
N×M
≥0 , where ri,j is the

personalized reserve price for bidder i ∈ [N ] in auction Aj ; and v = (vi,j) ∈R
N×M
≥0 where vi,j is the

value of bidder i in auction j. For ease of analyses assume that no pair of bidders have the same

value in an auction, i.e. vi,j 6= vi′,j for any two bidders i 6= i′ and any j ∈ [M ]. In each auction j,

let there be Sj available slots, where slot ℓ ∈ [Sj ] is associated with position discount µj(ℓ) and

1≥ µj(1)>µj(2)> · · ·>µj(Sj)> 0. Note that the position discount of a slot can be interpreted as

its click-through-rate (see more details in Lahaie et al. (2007), Varian (2007)), and therefore slots

with higher ranks (i.e. smaller indices) are more likely to be clicked and thus have larger position

discounts. For positions/ranks bellow the available slots, i.e. Sj +1, ...,N , without loss of generality,

we set µj(Sj +1)= . . .= µj(N) = 0.

Allocation and auction outcomes. The platform solicits bids from bidders b =

(bi,j)i∈[N ],j∈[M ] ∈ R
N×M
≥0 , where bi,j is the bid from bidder i in auction j. Then, it ranks bidders

by their bids in each auction (tie-breaking by bidder indices) and allocates the ℓth slot of an auc-

tion to the bidder who is ranked in position ℓ (i.e. who has the ℓth highest bid) if she clears her

reserve, i.e. if bi,j ≥ ri,j . Note that for ease of presentation, we consider a lazy implementation of

personalized reserves such that a slot is not allocated to a bidder if her bid does not clear her

reserve, but we point out that it will become clear later that our results continue to hold for eager

reserve implementationsPaes Leme et al. (2016). We refer to these allocations as the outcome of the

autobidding instance, defined as x = (x1, . . . ,xM ) where xj = (xi,j,ℓ)i∈[N ],ℓ∈[Sj] ∈ {0,1}N×Sj is the

outcome vector in auction j, and further xi,j,ℓ = 1 only if bidder i ranks in position ℓ in auction j

while clearing her reserve, and 0 otherwise. Note that each bidder i can win at most one slot in an

auction j, i.e.
∑

ℓ∈[Sj ]
xi,j,ℓ ≤ 1, where we have ≤ because a bidder may not win any slots or does not

clear her reserve. For any outcome x, let ℓi,j be the position/ranking of bidder i in auction j, and

define Wi,j(x) = µj(ℓi,j) · vi,j · xi,j,ℓ as bidder i’s acquired welfare in auction j. Note that if i does

not win a slot in auction j, her position ℓi,j > Sj + 1, and her position discount µj(ℓi,j) = 0. The

welfare contribution of bidder i is then defined as Wi(x) =
∑

j∈[M ]Wi,j(x), and the total welfare of

outcome x is W (x) =
∑

i∈[N ]Wi(x).
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Payments. Once the platform determines allocations and outcomes according to bids b∈R
N×M
≥0 ,

the platform charges payment pi,j(b) to bidder i for auction j according to the payment rules. For

illustrative purposes, the following includes example payment rules for several classic auctions.

Example 2.1 (Example payment rules) Suppose bidders submit bids b = (bi,j) ∈ R
N×M
≥0 , and

each bidder i is associated with a personalized reserve ri,j ∈R≥0 for auction j. We denote (b̂1,j . . . b̂N,j)

to be the bids’ order statistics where b̂ℓ,j is the ℓth largest bid in auction j. Then, for any bid-

der i who won a slot ℓi,j ∈ [Sj ] in auction j, the following shows her corresponding payment pi,j

under different auction formats: (1) VCG: pVCG

i,j (b) =
∑Sj

ℓ=ℓi,j
(µj(ℓ)− µj(ℓ+ 1)) ·max{b̂ℓ+1,j, ri,j};

(2) GSP: pGSP

i,j (b) = µj(ℓi,j) ·max{b̂ℓi,j+1, ri,j}; (3) GFP: pGFP

i,j (b) = µj(ℓi,j) ·max{b̂ℓi,j , ri,j}. It is well

known that for the same bid profile b, we have the following payment dominance relation: pGFP

i,j (b)≥

pGSP

i,j (b)≥ pVCG

i,j (b) for all i∈ [N ] and j ∈ [M ] (see e.g. Edelman et al. (2007)).

2.2. Objectives and behavior of autobidders

We consider the setting where bidders aim to maximize total value over M auctions, subject to

a return-on-ad-spent (ROAS) constraint which guarantees that the total expenditure is less than

total acquired value across all auctions.1 Mathematically, bidder i, when fixing other bidders’ bids

b−i ∈R
(N−1)×M
≥0 , decides on bids bi ∈R

M
≥0 with the following optimization problem:

max
bi∈RM

≥0

Wi(x(bi,b−i)) s.t. Wi(x(bi,b−i))≥
∑

j∈[M ]

pi,j(bi,b−i) . (1)

It has been shown in previous literature (Aggarwal et al. 2019, Deng et al. 2021, Balseiro et al.

2021a, Mehta 2022) that for truthful (i.e. ex-post incentive compatible) auctions such as VCG, the

optimal bidding strategy for any autobidder i is to submit bid values of the form bi,j = αivi,j for

auction j ∈ [M ], where αi > 0 is a bid multiplier that is used across all auctions. Such a bidding

strategy is called uniform bidding. Note that for autobidders, taking any uniform bid multiplier

αi < 1 is weakly dominated by setting αi = 1. This is because by setting αi = 1, the bidder can

acquire larger total value as compared to setting αi < 1. At the same time, the bidder bids truthfully

in all auctions, and because the payment in any auction is no greater than the winning bid value

in truthful auctions, the ROAS constraint is always satisfied under αi = 1. Therefore, we focus on

undominated bid-multipliers, i.e. αi ∈ [1,∞) for all i∈ [N ].

1 A more general concept related to ROAS is return-on-investment (ROI), where each bidder i has a target ROI ratio
Ti such that her constraint in Equation (1) is instead written as Wi(x(bi,b−i)) ≥ Ti ·

∑
j∈[M] pi,j(bi,b−i); see e.g.

Golrezaei et al. (2018, 2021a). In this paper, since we study worst-case autobidding instances, we can divide all bidder
i’s values by Ti so it is without loss of generality to consider ROAS constraints.
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Remark 2.1 In the paper, truthfulness in auctions is always w.r.t. quasi-linear utility maximizers.

For bidders who have constraints or do not maximize quasi-linear utility, e.g., autobidders with

objectives as in Equation (1), truthful bidding may no longer be a dominant strategy in truthful

auctions.

In light of the above discussion on uniform bidding, in the following Sections 4 and 5, we study

the truthful VCG auctions, and hence only focus on uniform bidding strategies. Later in Section 6

when we extend our results to non-truthful auctions such as GSP and GFP, we will discuss more

general bidding strategies, in particular, non-uniform bidding.

2.3. Efficient auction outcomes, welfare guarantees and fairness

Let ℓOPT

i,j be the position of bidder i in auction j when ranked according to true values v ∈R
N×M
≥0 .

Then we call the outcome xOPT with xOPT

i,j,ℓ = I{ℓ= ℓOPT

i,j }, the efficient outcome. Note that xOPT

is called efficient because it yields the largest total welfare, i.e. xOPT = argmaxxW (x). Similar to

our definition for welfare of an outcome in Section 2.1, let OPTi,j = µj(ℓ
OPT

i,j ) · vi,j , OPTi(x) =
∑

j∈[M ] OPTi,j(x), and OPT(x) =
∑

i∈[N ] OPTi(x) be the welfare of bidder i in auction j, total

welfare contribution of bidder i, and total welfare, respectively, under the efficient outcome. Finally,

we denote F as the set of all feasible outcomes that result from some bid profile under which every

bidder’s ROAS constraint is satisfied (see Equation (1).

Our goal is to present a characterization for how model primitives of the autobidding instance Θ

impact overall fairness of bidders defined as followed:

Definition 2.1 (δ-fairness) For any δ ∈ [0,1], an autobidding instance is δ-fair for bidder i if

minx∈F
Wi(x)

OPTi
≥ δ.

The motivation of our notion of fairness in Definition 2.1 is to quantify the potential misalignment

between optimizing individual bidder welfare, and optimizing total welfare (across all bidders) which

is arguably one of the most foundational topics in the domain of mechanism design. As auctioneers

develop mechanisms to approximate efficient outcomes that optimize total welfare, there is a lack

of consideration for the welfare of individual bidders, and the improvement in total welfare due to

such mechanisms may come at the cost of individual-bidder welfare. Hence, Definition 2.1 presents

a metric for auctioneers to characterize the potential discrepancies between bidder and auctioneer

welfare objectives. We also point out that our definition of fairness can be viewed as an analogue to

the notion of price of anarchy (POA) that measures the worst-case total welfare achieved amongst

all equilibrium compared to the optimal total welfare (see e.g. Roughgarden (2015) for details).

In particular, our notion of fairness in Definition 2.1 measures each individual bidder’s worst-case

welfare w.r.t her welfare achieved under the efficient outcome.
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In addition to individual bidder fairness, we also consider the loss in welfare compared to a bidder’s

welfare contribution under the efficient outcome, formally defined as followed:

Definition 2.2 (Welfare loss w.r.t. efficient outcome) For an outcome x and any bidder i ∈

[N ], let Li(x) = {j ∈ [M ] :Wi,j(x) < OPTi,j} be the set of auctions in which bidder i’s acquired

welfare is less than that of her welfare under the efficient outcome. Then, we define the loss of bidder

i under outcome x w.r.t. the efficient outcome xOPT (or simply “welfare loss” in the rest of the

paper):

lossi(x) =
∑

j∈Li(x)

(OPTi,j −Wi,j(x)) . (2)

Remark 2.2 For any outcome x, let ℓi,j be the position (i.e. ranking) of bidder i in auction j, and

recall that ℓOPT

i,j is the position of bidder i in auction j under the efficient outcome xOPT. Then, the

set Li(x) = {j ∈ [M ] :Wi,j(x)<OPTi,j} can also be interpreted as the set of auctions where bidder

i’s ranking under x is lower than her ranking xOPT, or in other words the set of auctions that incur

a welfare loss w.r.t. xOPT. Hence we can also rewrite Li(x) = {j ∈ [M ] : ℓi,j > ℓOPT

i,j }.

The following proposition connects the notion of welfare loss (as in Definition 2.2) and fairness

(as in Definition 2.1). The proposition shows that an upper bound on welfare loss can be directly

translated into a welfare lower bound that corresponds to our fairness notion. See Appendix B.1 for

the proof.

Proposition 2.1 (Translating loss to fairness) Assume for bidder i ∈ [N ] and outcome x we

have lossi(x)≤B for some B > 0. Then, Wi(x)

OPTi
≥ 1− B

OPTi
.

3. Incorporating ML advice for bidder values as personalized reserve prices

With modern machine learning (ML) models and frameworks, online ad platforms can utilize avail-

able historical data (e.g. bid logs, keyword characteristics, user profiles, etc.) to produce predictive

signals (or more generally ML advice) on autobidders’ values. In this work, we specifically focus on

ML advice that take the form of a lower-confidence bound of true advertiser values.

Our key approach to incorporate this type of ML advice in our autobidding setting, is via simply

setting personalized reserve prices to be the lower confidence bound for each bidder’s value. To

motivate this approach, consider the following example:

Example 3.1 (Motivating example) Consider 2 bidders competing in 2 second-price auctions

(SPA) whose values are indicated in the following table with some v > 0.
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Auction 1 Auction 2

bidder 1 v 0

bidder 2 v
2

v

For illustrative convenience suppose bidder 1 sets her bid multiplier to be α1 = 1. Then when her

competitor bidder 2 sets a multiplier α2 > 2, bidder 2 will win both auctions and acquire a total

value of v2,1 + v2,2 =
3
2
v while submitting a payment of α1(v1,1 + v1,2) = v. In this case, bidder 2

satisfies her ROAS constraint and extracts all bidder 1’s welfare, leaving her with no value. We also

highlight that this bid mulitplier profile constitutes an equilibrium, because bidder 1 cannot raise

her bid multiplier to outbid bidder 2 for auction 1, since with α2 > 2 bidder 1 would violate her

ROAS constraint if she bids more than α2v2,1 > v.

Now suppose for each value vi,j (i, j ∈ [2]), the platform possesses a lower-confidence type of

ML advice, namely (v̂i,j)i,j∈[N ] such that βvi,j ≤ v̂i,j < vi,j for all vi,j > 0 for some β > 1
2
, and sets

personalized reserves ri,j = v̂i,j . If bidder 2 attempts to win both auctions by setting α2 > 2, her

payment will be at least max{βv2,1, α1v1,1}+max{βv2,2, α1v1,2}= v+βv > 3
2
v, violating her ROAS

constraint. Therefore, via incorporating ML advice as personalized reserves, bidder 1’s competitor

is prohibited from outbidding her in auction 1, and hence safeguarding bidder 1’s welfare.

The main observation from the above example is that without reserve prices, bidder 2 acquires a

large margin for her ROAS constraint by winning auction 2 where competition is small and cost is

low. Therefore, she can raise her bid to outbid bidder 1 in auction 1 without violating her overall

ROAS constraint by covering the high expenditure in auction 1 with her acquired value margin in

auction 2. By setting personalized reserves properly, the platform can increase bidder 2’s payment

in auction 2, which in turn decreases the manipulative power of bidder 2 by reducing the ROAS

value margin she can acquire from auction 2.

We formally characterize reserves prices with which the platform can reduce bidders’ manipulative

power using the notion of approximate reserves defined as followed.

Definition 3.1 (β-accurate ML advice and approximate reserves) In an autobidding

instance Θ= (N,M,A,r,v), suppose the platform possesses a lower-confidence type of ML advice

(v̂−i,j)i,j∈[N ]. If v̂−i,j ∈ [βvi,j, vi,j) with some β ∈ (0,1) for all i, j and vi,j 6= 0, we say that the ML advice

is β-accurate. Further, if the platform sets ri,j = v̂−i,j , we say reserve prices r are β-approximate.

Remark 3.1 ML-advice in real-world online advertising settings generally concerns predicting

advertiser values and takes the form of confidence intervals (see e.g. Shrestha and Solomatine (2006),

Braga et al. (2007), Jiang et al. (2008), Dai et al. (2020) and references therein). We remark that

such confidence intervals can be viewed as a special case of the lower-confidence type of ML advice in
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Definition (3.1): suppose the platform utilizes some ML model to predict the true value vi,j of bidder

i in auction j, and produces a confidence interval (v̂−i,j, v̂
+
i,j) ∋ vi,j with v̂−i,j , v̂

+
i,j > 0. The platform

can then choose personalized reserve ri,j = v̂−i,j , which is β-approximate for β =
v̂−i,j

v̂+
i,j

∈ (0,1) because

βvi,j <βv̂+i,j = v̂−i,j = ri,j < vi,j . Additionally, we remark that one can similarly handle ML-advice in

the form of predictions that satisfy probabilistic concentration inequalities; e.g. suppose the predicted

value v̂i,j satisfies |v̂i,j −vi,j |<η with high probability (w.h.p) for some known η, then the confidence

interval (v̂i,j−η, v̂i,j+η) contains vi,j w.h.p, and one can set personalized reserve ri,j = v̂i,j−η. Note

that with such personalized reserves derived from probabilistic ML-advice, all results in this paper

remain valid w.h.p.

We point out that our definition of ML advice and approximate reserves is general to any auction

format. The gap between the lower bound βvi,j and the true value vi,j in Definition (3.1) represents

the inaccuracies of the platform’s ML advice. In other words, β can be perceived as a quality measure

of the platform’s ML advice for advertiser value, such that larger β represents better advice quality.

4. Fairness guarantees for VCG with ML advice

In the motivating Example 3.1, we observe that ML advice and corresponding β-approximate

reserves allow the platform to safeguard welfare for individual bidders by increasing payments and

consequently limit the manipulative behavior of bidders who face significantly small competition in

certain auctions. In this section, through the following Theorem 4.1, we characterize this intuition

for the classic VCG auction, and present a quantitative measure for the relationship between overall

fairness of the platform and ML advice when incorporated in the form of approximate reserves.

Theorem 4.1 (Fairness lower bound for VCGs with β-approximate reserves) Consider

autobidding instance Θ = (N,M,A,r,v) where the auction format A is the VCG auction, and

reserve prices r are β-approximate as in Definition 3.1. For any feasible outcome x∈F and bidder

i ∈ [K] who adopts bid multiplier αi > 1, the loss and fairness (Equation (2) and Definition 2.1)

are bounded as:

lossi(x)≤
1−β

αi − 1
OPT−i and min

x∈F

Wi(x)

OPTi

≥ 1−
1−β

αi − 1
·
OPT−i

OPTi

The key message for Theorem 4.1 is that with more accurate ML advice (i.e. larger β), online ad

platforms can set larger approximate reserves, and hence improve welfare and fairness guarantees for

individual bidders. We also provide some intuition for the term 1−β
αi−1

OPT−i

OPTi
in the bound. Increasing β

(i.e. increasing reserve prices via improving ML quality) or increasing the bid multiplier αi, raises the

cost for competitors to outbid bidder i in certain auctions, and hence makes it more difficult to cover

her expenditures that arise from significant overbidding. This reduces competitors’ manipulative
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power, and in turn improves the welfare guarantees for bidder i. Note that this aligns with the

intuition we obtained in Example 3.1. We also point out that it may be tempting for bidder i to

set her multiplier αi to infinity (or as large as possible). However, by doing so bidder i might be

winning too many auctions with payments exceeding her values, violating her ROAS constraint. In

other words, there exists a tradeoff between large multipliers and ROAS feasibility. On the other

hand,
OPT−i

OPTi
can be perceived as the relative (inverse) market share of bidder i, such that with a

smaller market share she becomes more vulnerable to manipulative behavior of others, resulting in

lower fairness guarantees.

Proof sketch for Theorem 4.1. Here, we provide a roadmap of our proof techniques for the special

case where there is only a single slot in each VCG auction (i.e. all auctions are SPAs): bidder i

would incur a loss w.r.t. the efficient outcome only if it loses an auction j ∈Li (see Definition 2.2)

where her value is the largest among all bidders. Since the uniform bid multiplier of i is strictly

greater than 1, the winner of the auction, denoted as κj 6= i, pays an amount at least αivi,j > vi,j

which is strictly greater than her value vκj ,j . Thus, in order for κj to satisfy her ROAS constraint,

she must cover her expenditure in auction j via acquiring value from other auctions. Following the

same logic, all bidders who outbid bidder i in an auction j ∈Li where bidder i has the largest value

must cover their high expenditures, and the total amount they can cover is capped by a natural

upper bound OPT−i. Thus, this provides an upper bound on the the total value that bidder i can

lose from auctions where she has the highest value, which further translates into a welfare guarantee

using Proposition 2.1.

The proof for general multi-slot VCG is much more involved, since bidder i may partially lose

welfare if in some auction she ranks lower than that under the efficient outcome, but still acquires

a slot. We refer readers to Appendix C.1 for the full proof.

We point out that although our autobidding setup described in Sections 2.1, 2.2 and the notion

of approximate reserves (Definition 3.1) are the same as those in Deng et al. (2021), Balseiro et al.

(2021a)], our analyses and proof techniques are different, primarily because we focus on the welfare

guarantees for individual bidders, where as Deng et al. (2021), Balseiro et al. (2021a) investigates

total welfare for all bidders. In particular, in our proof we fix a bidder i and carefully analyze the

amount of expenditure that could be covered by each competitor who outbids bidder i in auctions

where i has the highest value, whereas the aforementioned related works takes an aggregate view to

lower bound total welfare of all bidders. Nevertheless, Balseiro et al. (2021a) shows that approximate

reserves improve the total welfare of all bidders, and therefore along with Theorem 4.1, we can

see that incorporating β-accurate ML advice as approximate reserves not only benefits the entire

platform’s total welfare, but also enforces a certain degree of individual fairness.
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In light of the fairness guarantee presented in Theorem 4.1 the following corollary presents a

sufficient condition for the platforms’ ML advice accuracy to achieve certain level of bidder fairness.

Corollary 4.2 For any autobidding instance Θ and δ ∈ (0,1), if the platform can produce ML advice

with accuracy β ≥ 1 − (1 − δ) · (α − 1) ·mini∈[K]
OPTi
OPT−i

, the autobidding instance is δ-fair for all

bidders. Here, α is a multiplier lower bound for all bidders such that α > 1, and (1− δ) · (α− 1) ·

maxi∈[K]
OPTi
OPT−i

< 1.

Finally, the following theorem states the fairness bound in Theorem 4.1 is tight. For a technical

re-statement of the Theorem and its proof see Appendix C.2.

Theorem 4.3 (Matching fairness lower bound) For any β ∈ (0,1), α > 1, and R ∈
[

0, αi−1
1−β

]

,

there exists an autobidding instance Θ = (N,M,A,r,v) with β-approximate reserves r, in which

there is a bidder i whose inverse-market share is
OPT−i

OPTi
= R, and has a fairness guarantee

minx∈F
Wi(x)

OPTi
= 1− 1−β

αi−1
·
OPT−i

OPTi
when she adopts multiplier αi =α.

5. Impossibility result: VCG is the fairest

Having presented a fairness guarantee in the previous Section 4 that improves according to the

platform’s ML advice accuracy, a natural question is that for a given level of accuracy β, can one

achieve a universally better fairness guarantee than that of Theorem 4.1 via considering auction

formats other than VCG? In this section, we demonstrate that the answer is negative when we

restrict the auction to a broad class of truthful mechanisms (possibly randomized) with anonymous

allocations. Here, we again emphasize that truthfulness is w.r.t. quasi-linear utility maximizers (see

Remark 2.1). To be self-contained, we include the definition of allocation-anonymous auctions:

Definition 5.1 (Allocation-anonymity) A possibly randomized auction is allocation-anonymous

if the outcome for a permutation of bid profile b is the permutation of the outcome for b.

Remark 5.1 An alternative view for auction anonymity is that the auction’s allocation is inde-

pendent of bidders’ identities. For instance, for an auction format A with a single slot, allocation-

anonymity says for any set of bid values B = {b1 . . . bK}, there exists probabilities q(B) =

(q1(B) . . . qK(B))∈ [0,1]K+1 where qk(B) = P(bid value bk wins auction A given competing bids b−k)

only depends on relative bid values in B. Note that
∑

k∈[K] qk(B)≤ 1.

Similar to Section 4, if we consider an anonymous auction A with β-approximate reserves, the con-

ceptual procedure of interest is to impose such reserve price on top of A with a lazy implementation

Paes Leme et al. (2016): if a bidder’s bid exceeds her reserve she will be allocated according to
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A, otherwise she will not be allocated (leaving a slot empty if she would have won the slot with-

out reserves). The following theorem shows under this procedure with β-approximate reserves, no

allocation-anonymous, truthful auction A can universally outperform VCG, i.e. for any A there

exists an autobidding instance in which a bidder has a welfare guarantee at most the fairness lower

bound for VCG of Theorem 4.1.

Theorem 5.1 For any auction A that is allocation-anonymous, truthful, and possibly randomized,

there exists an autobidding instance Θ= (N,M,A,r,v) with a single available slot in each auction

and β-approximate reserves r, such that there is a feasible outcome x in which a bidder i’s welfare

is upper bounded as EA[Wi(x)]

EA[OPTi]
≤ 1− 1−β

αi−1
·
EA[OPT−i]
EA[OPTi]

for N,M →∞ and multiplier αi > 1 . Here the

expectation is taken w.r.t. possible randomness in A. 2

Our proof strategy for Theorem 5.1 is to construct a “bad” autobidding instance for any auction A of

interest that is “unfair” as possible to one specific bidder: we show that in this autobidding instance,

there is some bidder i who has a welfare upper bound as stated in the theorem. The construction of

this bad autobidding instance is motivated by Example 3.1, in which the key source of “unfairness”

for an individual bidder i comes from the fact that competing bidders outbid i in auctions where

i’s value is high, and cover their expenditures with value acquired from other auctions where they

have no competition. Following this idea, since the bad instance in Theorem 5.1 requires us to

maximize “unfairness” for a specific bidder i, we can achieve this by having auctions where each

of i’s competitors is the only bidder submitting a nonzero bid, and with these “no-competition”

auctions competitors can cover their expenditures for outbidding bidder i in auctions where i’s value

is largest.

Proof sketch for Theorem 5.1. For any auction A that is allocation-anonymous, truthful and

possibly randomized, we consider a “bad” autobidding instance Θ= (N,M,A,r,v) where N =K+1

bidders labeled B1...BK ,B0 compete in M =2K+1 auctions with single-slots for some K ∈N, and

bidders’ values are shown in the following table. Reserves are set to be ri,j = βvi,j for some β ∈ (0,1)

and are β-approximate (see Definition 3.1). Bidder B0’s multiplier is fixed to be α0 > 1.

2 In general imposing personalized reserve prices invalidate allocation anonymity. However in the specific autobid-
ding instance we constructed, imposing β-approx (personalized) reserve prices preserves anonymity in allocation-
anonymous auction A; see proof sketch at end of section.
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A1 A2 . . . AK AK+1 AK+2 . . . A2K A2K+1

B1
α0v+ǫ

ρ
α0v+2ǫ

ρ
. . . α0v+Kǫ

ρ
γ 0 . . . 0 0

B2
α0v+2ǫ

ρ
α0v+3ǫ

ρ
. . . α0v+ǫ

ρ
0 γ . . . 0 0

...
...

...
...

...
...

...
...

BK
α0v+Kǫ

ρ
α0v+ǫ

ρ
. . . α0v+(K−1)ǫ

ρ
0 0 . . . γ 0

B0 v v . . . v 0 0 . . . 0 y

In the table, we choose ǫ = O(1/K3) and suitable parameters ρ, γ, v, y > 0 to satisfy certain con-

ditions, one of which guarantees B0’s value is the highest in auctions A1 . . .AK . With the above

instance, we consider the specific outcome x where bidders 1, . . . ,K adopt bid multiplier ρ, in which

case bidder B0 has the lowest bid in auctions A1 . . .AK . Then, our proof of Theorem 5.1 is to show

bidder B0 can acquire welfare at most the upper bound in Theorem 5.1. The proof consists of 3

parts:

(1) Under outcome x, we upper bound bidder B0’s expected acquired welfare in auctions A1...AK .

This acquired welfare should be small, since other bidders are outbidding bidder B0 in these auctions,

by covering their expenditures via the value acquired in auctions AK+1, ...,A2K , respectively.

(2) We show that bidder B0 satisfies her ROAS constraint, which holds valid due to the fact that

she is acquiring value in auction A2K+1 for suitable y facing no competition.

(3) We show that any bidder i ∈ [K] satisfies her ROAS constraint when ǫ → 0. In

this part, the key step is to analyze the values acquired by any bidder i ∈ [K] in auc-

tions A1, . . . ,AK , which is approximately α0v
ρ

·
∑

j∈[K] P (bidder i wins auction j). We recog-

nize that when bidders 1, . . . ,K use bid multiplier ρ, the bid profiles for auctions A1...AK

are a cyclic permutation of the set {b0, . . . , bK} = {α0v,α0v + ǫ, . . . , α0v + Kǫ}. Therefore by

allocation-anonymity of A, the expected outcome in auctions A1, . . . ,AK are symmetric over

bidders 1, . . . ,K, which implies the sum of probabilities
∑

j∈[K] P (bidder i wins auction j) =
∑

k∈[K] P (bid value bk wins auction A given competing bids b−k) ≤ 1 (see Remark 5.1). Here, we

also point out that any β approximate reserves do not affect allocation in auctions A1...AK , simply

because any bid value in {b0, . . . , bK} is greater than the largest reserve price among agents, namely

βv, since α0 > 1 > β. In other words, under the specific outcome x, allocation anonymity of any

auction in A1, . . . ,AK is preserved with personalized reserves ri,j = βvi,j due to our construction.

For a technical re-statement of Theorem 5.1 and its proof, please refer to Appendicies D.1 and

D.2.
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6. Extensions: fairness guarantees for GSP and GFP with ML advice

In this section, we extend our fairness and welfare guarantees for the VCG auction in Theorem 4.1

to the GSP and GFP auctions, which are both non-truthful. For technical purposes, we assume that

bidder values are “well-separated” in the following sense:

Definition 6.1 (∆-separated values) We say values v ∈ R
N×M
≥0 are ∆-separated for some ∆ ∈

(1,2) if any value vi,j is at least 1
2−∆

times as much as any value that is less than vi,j in the same

auction j, i.e. vi,j ≥
1

2−∆
·max{vk,j : k ∈ [N ], vk,j < vi,j} for any bidder i and auction j.

Although the value separations in Definition 6.1 are multiplicative, they also capture the scenario

in which values are “additively separated”. In particular, assume there exists some small d> 0 such

that d<min{vi,j : vi,j 6= 0}, and we have additive separation vi,j −d≥max{vk,j : k ∈ [N ], vk,j < vi,j}

for any bidder i and auction j. Then, by taking ∆∈
(

1,min
{

2,1+ d
max{vi,j :vi,j 6=0}

})

, the values are

∆-separated according to Definition 6.1 because (2−∆)vi,j ≥
(

1− d
max{vi,j :vi,j 6=0}

)

vi,j ≥ vi,j − d ≥

max{vk,j : k ∈ [N ], vk,j <vi,j} for all vi,j . This suggests Definition 6.1 is not restrictive.

Further, as discussed in Section 2.2, uniform bidding (i.e. setting the same bid multiplier for

all auctions) is only optimal in truthful auctions. In GSP and GFP, one can construct instances

where non-uniform bidding strictly outperforms uniform bidder (for more details see e.g. Deng et al.

(2019)). Thus, for GSP and GFP autobidding instances, we impose no assumptions on the bid values

of bidders other than being undominated: we say a bid value bi is undominated for bidder i if there

is no other bid value b′ that strictly outperforms bi in the sense of Equation (1) for all competing

bid profiles b−i.

The following lemma lower bounds undominated bids in the presence of β-approximate reserves.

Lemma 6.1 (Lemma 4.7 & 4.9 of Balseiro et al. (2021a)) Consider any autobidding

instance Θ= (N,M,A,r,v) where the auction format A is the GSP or GFP auctions, and reserve

prices r are β-approximate. Denote U ⊆ R
N×M
≥0 to be the set of bid profiles in which each bid is

undominated and satisfies all bidders’ ROAS constraints. Then for any b ∈ U , bi,j must satisfy

bi,j ≥ ri,j ≥ βvi,j for all i, j.

Finally, our main theorem for this section is the following:

Theorem 6.2 Consider any autobidding instance Θ = (N,M,A,r,v) where the auction format

A is the GSP or GFP auction. Suppose reserve prices r are β-approximate, and values v are

∆-separated s.t. 0 < 1
∆

< β < 1. Consider any undominated bid profile b ∈ U ⊆ R
N×M
≥0 where U

is the set of all undominated bids under which every bidder’s ROAS constraint is satisfied (see

Equation (1)). Then, lossi(x(b))≤
1−β

β−1/∆
OPT−i, where lossi is defined in Equation (2). Further,

minb∈U
Wi(x(b))

OPTi
≥ 1− 1−β

β−1/∆
·

OPT−i

OPTi
.
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The proof for Theorem 6.2 is presented in Appendix E.1. Comparing the fairness guarantees in

Theorem 4.1 for VCG and Theorem 6.2 for GSP/GFP, we observe when values are ∆-separated

and ML advice is β-accurate, when bidders adopt small enough uniform multipliers in VCG (i.e.

αi − 1 < β − 1/∆), GSP/GFP provides a better fairness guarantee compared to VCG, whereas

for large multipliers (i.e. αi − 1 > β − 1/∆), fairness in VCG dominates that in the considered

non-truthful auctions.
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Appendices for

Fairness in the Autobidding World with Machine-learned

Advice

Appendix A: Extended Literature Review

Algorithmic bidding/learning under constraints The behavior of our bidders of interest are governed

by their ROAS, and there has been a growing area of works on bidding-algorithm design under similar

financial constraints for online advertising markets. Balseiro et al. (2021b) develops theoretical performance

guarantees of the budget pacing strategy for bidders with hard budget cap (see more on budget manage-

ment strategies in Balseiro et al. (2021c)), while Balseiro et al. (2020) presents a more general mirror descent

algorithm for online resource allocation problems. Golrezaei et al. (2021a) present near-optimal bidding algo-

rithms for bidders with both budget and ROI constraints in expectation. In this work, we do not study the

design of bidding algorithms but instead consider worst case outcomes under any feasible bidding profile.

Reserve price optimization. Reserve price techniques and optimization have been studied for differ-

ent auction formats and settings. In the single-shot second price auction setting Paes Leme et al. (2016),

Beyhaghi et al. (2021), Derakhshan et al. (2022) presents different approaches with theoretical performance

guarantees to optimize personalized reserve prices, while Yuan et al. (2014) presents an empirical study on

the impact of reserve price on the entire auction system for display advertising. For repeated second price

auctions, Golrezaei et al. (2019b,a), Kanoria and Nazerzadeh (2020) dynamically learn reserve prices to max-

imize cumulative revenue facing strategic agents, where as Feng and Lahaie (2021) optimize reserve prices to

balance revenue and bidders’ incentives to misreport. For first price auctions, Feng et al. (2021) introduces a

gradient-based adaptive algorithm to dynamically optimize reserve prices. Nevertheless, all aforementioned

works attempt to design and learn optimal or near optimal reserve prices for the purpose of revenue maxi-

mization, whereas in our work we directly set reserves using ML advice provided by some external black-box,

and shed light on how reserve prices can improve fairness among all bidders.

Appendix B: Proofs for Section 2

B.1. Proof for Proposition 2.1

For simplicity, denote δi,j = OPTi,j − Wi,j(x). Then, OPTi − Wi(x) =
∑

j∈[M]:δi,j>0 δi,j +
∑

j∈[M]:δi,j=0 δi,j +
∑

j∈[M]:δi,j<0 δi,j = lossi(x) +
∑

j∈[M]:Wi,j(x)>OPTi,j
(OPTi,j −Wi,j(x)) ≤ lossi(x) ≤ B .

Rearranging and dividing both sides by OPTi we get Wi(x)
OPTi

≥ 1− B
OPTi

.

Here we remark that it is possible to have Wi,j(x)>OPTi,j because bidders may overbid, and therefore

win auctions/slots that they would not have won under the efficient outcome.

Appendix C: Proofs for Section 4

C.1. Proof for Theorem 4.1

Fix a bidder i∈ [K], her bid multiplier αi, and any outcome x= (x1...xM) where xj ∈ {0,1}N×Sj is the

outcome vector in auction j.
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Denote ℓk,j, ℓ
OPT

k,j to be the position of bidder k ∈ [N ] in auction j ∈ [M ] under outcome x and the efficient

outcome, respectively. Consider an auction j ∈Li = {j ∈ [M ] : ℓi,j > ℓOPT

i,j } (see Remark 2.2), i.e. in auction j,

bidder i acquires a position (under x) bellow her position in the efficient outcome xOPT. Then there exists

a bidder κj such that

vκj ,j < vi,j, and ℓκj ,j ≤ ℓOPT

i,j < ℓi,j (3)

Consider the payment of bidder κj , and recall b̂ℓ,j is the ℓth largest bid in the jth auction:

pκj ,j ≥

Sj∑

ℓ=ℓκj ,j

(µ(ℓ)−µ(ℓ+1)) b̂ℓ+1,j

(a)
=

ℓOPT

i,j −1
∑

ℓ=ℓκj ,j

(µ(ℓ)−µ(ℓ+1)) b̂ℓ+1,j +

ℓi,j−1
∑

ℓ=ℓOPT

i,j

(µ(ℓ)−µ(ℓ+1)) b̂ℓ+1,j + pi,j

(b)

≥
(
µ(ℓκj ,j)−µ(ℓOPT

i,j )
)
vi,j +αi

(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j + β ·µ(ℓi,j)vi,j

= µ(ℓκj ,j)vi,j +(αi − 1)
(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j − (1− β) ·µ(ℓi,j)vi,j .

(4)

Here , (a) follows from the VCG payment rule as illustrated in Example 2.1; (b) follows from the fact that

bidder i’s ranking is ℓi,j, so any bidder who is ranked before position ℓi,j submitted a bid greater than

bi,j = αivi,j which is the bid of bidder i, i.e. b̂ℓ,j ≥ bi,j = αivi,j > vi,j for any ℓ≤ ℓi,j.

On the other hand, we have

pκj ,j +
∑

j′ 6=j

pκj ,j
′ ≤ µ(ℓκj ,j)vκj ,j +

∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′

pκj ,j
′ ≥ β ·µ(ℓκj ,j

′)vκj ,j
′ ∀j′ ∈ [M ] ,

where the first inequality follows from bidder κj’s ROAS constraint; the second inequality follows from the

fact that any winning bidder’s payment must be greater than her β-approximate reserves. Combining the

above inequalities and rearranging we get

pκj ,j ≤ µ(ℓκj ,j)vκj ,j +(1− β) ·
∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′ , (5)

Combining Equations (4) and (5), we get

(αi − 1) ·
(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j

≤ (1− β) ·

(

µ(ℓi,j)vi,j + ·
∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′

)

+µ(ℓκj ,j)
(
vκj ,j − vi,j

)

(a)

≤ (1− β) ·

(

µ(ℓi,j)vi,j + ·
∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′ +µ(ℓκj ,j)
(
vκj ,j − vi,j

)

)

(b)

≤ (1− β) ·



µ(ℓi,j)vi,j + ·
∑

j′∈[M]

µ(ℓκj ,j
′)vκj ,j

′ −µ(ℓOPT

i,j )vi,j



 .

(6)

In (a), we used the fact that vκj ,j − vi,j < 0 by the definition of κj in Equation (3); and (b) follows again

from Equation (3) such that µ(ℓOPT

i,j )≤ µ(ℓκj ,j
′).
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Summing the above over all j ∈Li = {j ∈ [M ] : ℓi,j > ℓOPT

i,j } (see Remark 2.2), we have

lossi(x) =
∑

j∈Li

(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j

≤
1− β

αi − 1




∑

j∈Li

µ(ℓi,j)vi,j +
∑

j∈Li

∑

j′∈[M]

µ(ℓκj ,j
′)vκj ,j

′ −
∑

j∈Li

µ(ℓOPT

i,j )vi,j





≤
1− β

αi − 1

(

W−i(x)+
∑

j∈Li

µ(ℓi,j)vi,j −
∑

j∈Li

µ(ℓOPT

i,j )vi,j

)

≤
1− β

αi − 1
OPT−i ,

(7)

which yields our desired upper bound for lossi(x). Here, the final inequality follows from OPT≥W (x) and

further

OPT−i ≥ W−i(x)+Wi(x)−OPTi

= W−i(x)+
∑

j∈Li

(Wi,j(x)−OPTi,j)+
∑

j∈[M]/Li

(Wi,j(x)−OPTi,j)

(a)

≥ W−i(x)+
∑

j∈Li

(Wi,j(x)−OPTi,j)

= W−i(x)+
∑

j∈Li

µ(ℓi,j)vi,j −
∑

j∈Li

µ(ℓOPT

i,j )vi,j .

(8)

where in (a) we used the fact that Wi,j(x)≥OPTi,j in any auction j ∈ [M ]/Li.

Finally, applying Proposition 2.1 w.r.t. upper bound of lossi(x) and since x∈F arbitrary, we obtain the

desired welfare guarantee lower bound.

C.2. Proof for Theorem 4.3

Theorem C.1 (Restatement of Theorem 4.3) Consider 2 bidders competing in three SPA auctions

whose values are indicated in the following table for any β ∈ (0,1) and y≥ 0.

Auction 1 Auction 2 Auction 3 .

bidder 1 y v 0

bidder 2 0 v− ǫ γ+ 1
1−β

· ǫ

Bidder 1’s multiplier is fixed to be α1 > 1, and consider v= 1−β

α1−1
·γ for any γ > 0. The reserve prices are set

to be ri,j = βvi,j. Then, we have

min
x∈F

W1(x)

OPT1

= 1−
1− β

α1 − 1
·
OPT−1 −

1
1−β

· ǫ

OPT1

(9)

Taking ǫ→ 0 shows that bidder 1’s welfare is equal to the fairness guarantee in Theorem 4.1.

Remark C.1 We remark that as ǫ → 0,
OPT−i

OPTi
=

α1−1

1−β
v

y+v
∈
[

0, α1−1
1−β

]

, so by varying y ∈ [0,∞), the above

example demonstrates our fairness lower bound in Theorem 4.1 is tight for any nontrivial market share ratio

OPT−i

OPTi
∈
[

0, α1−1
1−β

]

.
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Note that in any feasible outcome, bidder 1 must win auction 1, and bidder 2 must win auction 3. Hence

for auction 2, we only need to consider the following outcome:

Bidder 1 loses auction 2, and suffers welfare loss v. This outcome can be achieved by setting α2

such that α2(v − ǫ) > α1v. Bidder 2 accumulates value v + γ +
(

1
1−β

− 1
)

ǫ. Her payment for auction 2 is

max{α1v, β(v − ǫ)}, and for auction 3 is β
(

γ+ 1
1−β

· ǫ
)

. The following shows that her ROAS constraint is

satisfied:

v+ γ+

(
1

1− β
− 1

)

ǫ−max{α1v, β(v− ǫ)}− β

(

γ+
1

1− β
· ǫ

)

(a)
= v+ γ+

(
1

1− β
− 1

)

ǫ−α1v− β

(

γ+
1

1− β
· ǫ

)

= (1−α1)v+(1− β)γ+

(
1

1− β
− 1− β ·

1

1− β

)

ǫ

= 0 ,

where in (a) we used the fact β < α1. In the final equality we used the definition that v = 1−β

α1−1
· γ. On the

other hand, bidder 1’s ROAS constraint is apparently satisfied.

Under this outcome, we have

W1

OPT1

= 1−
v

OPT1

= 1−
1− β

αi − 1
·

γ

OPTi

=1−
1− β

αi − 1
·
OPT−i −

1
β
· ǫ

OPTi

Appendix D: Proofs for Section 5

D.1. Additional Definitions and Lemmas for Section 5

The following lemma shows that for anonymous and truthful auctions, the probability of the lowest bidder

winning a single auction is capped by a bound that decreases as the number of bidders grow.

Lemma D.1 (Lemma 3 in Mehta (2022)) In an anonymous and truthful auction for a single item with

N bidders, the bidder who submits the lowest bid wins the item with probability at most 1
N

.

The following technical definition and lemma (i.e. Definition D.1 and Lemma D.2) concerns the scenario

where only one bidder participates in the auction (others bid 0), and present an upper bound on the proba-

bility and cost respectively for the single bidder to win the auction.

Definition D.1 (Single bidder purchase probability and bid threshold) For any allocation-

anonymous and truthful auction A, consider the setting with a single bidder who submits bid b > 0 and

define

πA = lim
b→∞

P(bidder wins item with bid b) , (10)

where the limit exists because in a truthful auction, P(bidder wins item with bid b) increases in b (see Remark

2.1 on truthful auctions). Assume this max probability is reached at some bid threshold QA, i.e.

QA =min{b > 0 : P(bidder wins item with bid b) = πA} . (11)
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Note that in a deterministic single-slot auction that allocates to the highest bidder, πA = 1, and QA → 0.

For example, in an SPA with no reserve, the single bidder can win the auction with any arbitrarily small

positive bid with probability 1.

Lemma D.2 (Lemma 4 in Mehta (2022)) For any allocation-anonymous and truthful auction A with

single-bidder purchase probability πA and bid threshold QA, the expected cost for a single bidder for winning

the item is at most πA ·QA.

D.2. Proof of Theorem 5.1

Theorem D.3 (Restatement of Theorem 5.1) For any auction A that is allocation-anonymous, truth-

ful, and possibly randomized, 3 consider an autobidding problem instance w.r.t. A with M =2K+1 auctions

and N =K+1 bidders. Fix bidder 0’s bid multiplier to be α0 and some β ∈ [0,1). Consider the bidder values

{vi,j}i∈[N],j∈[M] given in the following table.

A1 A2 . . . AK AK+1 AK+2 . . . A2K A2K+1

B1
α0v+ǫ

ρ

α0v+2ǫ
ρ

. . . α0v+Kǫ

ρ
γ 0 . . . 0 0

B2
α0v+2ǫ

ρ

α0v+3ǫ
ρ

. . . α0v+ǫ

ρ
0 γ . . . 0 0

...
...

...
...

...
...

...
...

BK
α0v+Kǫ

ρ

α0v+ǫ

ρ
. . . α0v+(K−1)ǫ

ρ
0 0 . . . γ 0

B0 v v . . . v 0 0 . . . 0 y

In the table, we let γ > QA

β
>QA, ǫ=O(1/K3) and v = 1−β

α0−1
· πA · γ. Let ρ, y and a large enough K satisfy

the following:

α0 < ρ<
α0

β
s.t.

α0v+Kǫ

ρ
< v, and y >max

{
QA

α0

,
α0v

πA

}

, (12)

where QA, πA are defined in Definition D.1. Further, suppose the platform enforces personalized reference

prices r ∈R
N×M
≥0 on top of auction A, where ri,j = βvi,j. Then, letting the (possibly random) outcome be x

when bidders 1, ... K all adopt the bid multiplier ρ, the ROAS constraints for all bidders are satisfied when

K →∞ and ρ→ α0, and for bidder 0 we have

lim
K→∞

EA [W0(x)]

EA [OPT0]
≤ 1−

1− β

α0 − 1
· lim
K→∞

EA [OPT−0]

EA [OPT0]
(13)

where EA is taken w.r.t. the randomness in outcome x due to randomness in the auction A, and the loss of

bidder 0, namely loss0, is defined in Equations (2).

3 Here, we assume all auctions of interest are individually rational (IR), i.e. the payment of a bidder is always less
than her submitted bid.



6

First note that bidder 0 only has competition in auctions A1...AK , and hence can only incur a loss

(that contributes to loss0(x) defined in Equations (2)) within these auctions. Hence EA[loss0(x)] =

v
∑

j∈[K] P(bidder 0 loses auction j). Then we consider the following:

EA[loss0(x)] = v
∑

j∈[K]

P(bidder 0 loses auction j) = v
∑

j∈[K]

(1−P(bidder 0 wins auction j))

(a)

≥ v ·
K2

K +1
=

1− β

α0 − 1
· γ ·πA ·

K2

K +1

(b)
=

1− β

α0 − 1
·EA [OPT−0] ·

K

K +1
.

(14)

Here (a) holds because bidder 0 bids α0v for any auction in 1,2...K, which is strictly less than all

other bidders’ bids as they all adopt multipliers ρ in these auctions, so from Lemma D.1, we have

P(bidder 0 wins auction j) ≤ 1
K+1

; in (b) we used the fact that EA [OPT−0] =
∑2K

j=K+1 EA [γ] = γ ·K · πA

since there is only a single non-zero bidder in auctions AK+1 . . .A2K and each bidder submits a bid ργ > ρ>

QA (see Definition D.1).

Therefore we have

lim
K→∞

EA [W0(x)]

EA [OPT0]

(a)
= 1− lim

K→∞

EA [loss0(x)]

EA [OPT0]
≤ 1−

1− β

α0 − 1
lim

K→∞

EA [OPT−0]

EA [OPT0]
, (15)

where (a) follows from the fact that in our constructed autobidding instance, bidder 0’s acquired value in

each auction cannot exceed that under the efficient allocation, and hence can only incur loss in welfare.

Now it only remains to show that the multiplies (α0, ρ, . . . ρ)∈ (1,∞)K+1 yields a feasible outcome, i.e. the

ROI constraints of each bidder is satisfied in expectation. Let Vi,j and Ci,j be the expected value and cost

of bidder i in auction Aj , respectively.

1. Showing bidder 0’s ROI constraint is satisfied. We show by the following: bidder 0 only incurs a

non-zero expected cost in auctions A1 . . .AK and A2K+1, and we will show that the expected value V0,2K+1

is lower bounded by the expected costs C0,2K+1 +
∑

j∈[K]C0,j.

Since α0y > QA, the definition of the single-bidder purchasing probability in Definition D.1 implies that

bidder 0 acquires an expected value from auction A2K+1 of V0,2K+1 = πAy. Further, since bidder 0 is submits

the lowest bids in auctions A1 . . .AK under bid multiplier profile (α0, ρ . . .ρ) ∈ (0,∞)K+1, from Lemma D.1,

we have P(bidder 0 wins auction j)≤ 1
K+1

for all j ∈ [K]. Since the payment of a bidder in an auction is at

most her submitted bid (as the auction is IR), we know that
∑

j∈[K]C0,j ≤K · α0v

K+1
<πAy= V0,2K+1, where

the inequality follows from the definition of y in Equation (12) such that y >max
{

QA

α0

, α0v

πA

}

. This implies

bidder 0’s ROI constraint is satisfied.

2. Showing bidder i’s ROI constraint is satisfied for any i= 1,2 . . .K. We show this by considering

the following: bidder i only incurs a non-zero expected cost in auctions A1 . . .AK and AK+i, and we will show

that the expected values Vi,K+i +
∑

k∈[K] Vi,j is lower bounded by the expected costs Ci,K+i +
∑

j∈[K]Ci,j .

• Calculate cost Ci,K+i: For auction AK+i, bidder i’s bid is ργ > γ >QA from the definition of γ, so

by Definition D.1, the probability of i winning the item in auction AK+i is πA, and the expected cost is

Ci,K+i ≤ πA ·max{ri,K+i,QA} ≤ πA ·βγ , (16)

where the final inequality follows from the definition ri,K+i = βγ
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• Upper bound costs
∑

j∈[K]Ci,j: For auctions [K] = 1 . . .K, bidder i’s total expected cost can be

bounded as
∑

j∈[K]

Ci,j ≤ ρ
∑

j∈[K]

vi,jP (bidder i wins auction Aj)

= α0v
∑

j∈[K]

P (bidder i wins auction Aj)+
(K +1)K

2
ǫ .

(17)

where the first inequality follows from a bidder’s payment is at most her submitted bid since the auction

is IR.

• Calculate Vi,K+i: Considering auction AK+i, bidder i is the only bidder, and since ργ > γ >QA, the

definition of the single-bidder purchasing probability in Definition D.1 implies that bidder i’s acquires

an expected value from this auction of

Vi,K+i = πA · γ . (18)

• Lower bound
∑

k∈[K] Vi,j:

∑

k∈[K]

Vi,j ≥
α0v

ρ

∑

j∈[K]

P (bidder i wins auction j) . (19)

Combining Equations (16),(17),(18) and (19), we get

∑

j∈[K]

Vi,j +Vi,K+i −




∑

j∈[K]

Ci,j +Ci,K+i





≥ πA · γ+
α0v

ρ
·
∑

j∈[K]

P (bidder i wins auction j)

−



πA ·βγ+α0v ·
∑

j∈[K]

P (bidder i wins auction j) +
(K +1)K

2
ǫ





= πA · (1− β)γ−

(

α0 −
α0

ρ

)

v ·
∑

j∈[K]

P (bidder i wins auction j)−
(K +1)K

2
ǫ

(a)
= (α0 − 1)v−

(

α0 −
α0

ρ

)

v ·
∑

j∈[K]

P (bidder i wins auction j)−
(K +1)K

2
ǫ

(b)

≥ (α0 − 1)v−

(

α0 −
α0

ρ

)

v−
(K +1)K

2
ǫ

,

(20)

where (a) follows from the definition v = 1−β

α0−1
· πA · γ; In (b) we used the fact that ρ > α0 > 1 and

∑

j∈[K] P (bidder i wins auction Aj)≤ 1 due to the following: Consider the set of bid values B = {α0v,α0v+

ǫ,α0v + 2ǫ . . .α0v +Kǫ} ⊆ R>0, and we recognize that any bid value bk ∈ B exceeds the maximim reserve

price βv in auctions A1...AK . Therefore the constructed reserve prices do not affect allocation, and hence by

anonymity of auction A there exists probabilities q(B) = (q0(B), q1(B) . . . qK(B))∈ [0,1]K+1 where

qk(B) = P(bid value bk wins auction A given competing bids b−k) and

K∑

k=0

qk(B)≤ 1.
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We recognize that in each auction A1 . . .AK , under bid multipliers (α0, ρ, . . .ρ) ∈ (1,∞)K+1 the submitted

bid profile is a cyclic permutation of B. Therefore we know that

∑

j∈[K]

P (bidder i wins auction j) =

K∑

k=1

qk(B)≤ 1− q0(B)≤ 1

Finally, by taking ρ→ α0 and K →∞ in Equation (20), and utilizing ǫ=O(1/K3) we have

lim
ρ→α0

lim
K→∞

∑

j∈[K]

Vi,j +Vi,K+i −




∑

j∈[K]

Ci,j +Ci,K+i



 ≥ 0 .

This shows that bidder i’s ROI constraint is satisfied.

Appendix E: Proofs for Section 6

E.1. Proof of Theorem 6.2

Fix a bidder i ∈ [K] and any outcome x = (x1...xM ) where xj ∈ {0,1}N×Sj is the outcome vector in

auction j.

Denote ℓk,j, ℓ
OPT

k,j to be the position of bidder k ∈ [N ] in auction j ∈ [M ] under outcome x and the efficient

outcome, respectively. Consider an auction j ∈Li = {j ∈ [M ] : ℓi,j > ℓOPT

i,j } (see Remark 2.2), i.e. in auction j,

bidder i acquires a position (under x) bellow her position in the efficient outcome xOPT. Then there exists

a bidder κj such that

vκj ,j < vi,j, and ℓκj ,j ≤ ℓOPT

i,j < ℓi,j (21)

Consider the payment of bidder κj , and recall b̂ℓ,j is the ℓth largest bid in the jth auction. The following a

similar deduction as Equation (4) in the proof of Theorem 4.1, we have

pκj ,j

(a)

≥

Sj∑

ℓ=ℓκj ,j

(µ(ℓ)−µ(ℓ+1)) b̂ℓ+1,j

=

ℓi,j−1
∑

ℓ=ℓκj ,j

(µ(ℓ)−µ(ℓ+1)) b̂ℓ+1,j + pi,j

(b)

≥ β
(
µ(ℓκj ,j)−µ(ℓi,j)

)
vi,j + β ·µ(ℓi,j)vi,j

= βµ(ℓκj ,j) · vi,j

= µ(ℓκj ,j)vi,j +

(

β−
1

∆

)
(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j − (1− β) ·µ(ℓi,j)vi,j

− (1− β)µ(ℓκj,j)vi,j +

(
1

∆
− β

)

µ(ℓOPT

i,j )vi,j +

(

1−
1

∆

)

µ(ℓi,j)vi,j

(c)

≥ µ(ℓκj ,j)vi,j +

(

β−
1

∆

)
(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j − (1− β) ·µ(ℓi,j)vi,j

−

(

1−
1

∆

)

µ(ℓκj ,j)vi,j +

(

1−
1

∆

)

µ(ℓi,j)vi,j

=

(

β−
1

∆

)
(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j − (1− β) ·µ(ℓi,j)vi,j

+
1

∆
µ(ℓκj ,j)vi,j +

(

1−
1

∆

)

µ(ℓi,j)vi,j

(22)
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Here , (a) follows from the fact that for a fix bid profile, the payment of GSP or GFP for each bidder in an

auction dominates that of VCG (see discussion in Example 2.1); (b) follows from b̂ℓ,j ≥ bi,j for ℓ≤ ℓi,j, and

since b ∈ B ⊆R
N×M
≥0 is an undominated bid profile, Lemma 6.1 applies to bi,j ≥ βvi,j . Also pi,j ≥ ri,j ≥ βvi,j

be the definition of β-approximate reserves; (c) follows from the fact that β > 1
∆

and µ(ℓOPT

i,j )≤ µ(ℓκj ,j) since

ℓκj ,j ≤ ℓOPT

i,j according to Equation (21).

On the other hand, we have

pκj ,j +
∑

j′ 6=j

pκj ,j
′ ≤ µ(ℓκj ,j)vκj ,j +

∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′

pκj ,j
′ ≥ β ·µ(ℓκj ,j

′)vκj ,j
′ ∀j′ ∈ [M ] ,

where the first inequality follows from bidder κj’s ROAS constraint; the second inequality follows from the

fact that any winning bidder’s payment must be greater than her β-approximate reserves. Combining the

above inequalities and rearranging we get

pκj ,j ≤ µ(ℓκj ,j)vκj ,j +(1− β) ·
∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′ . (23)

Combining Equations (22) and (23), we get
(

β−
1

∆

)

·
(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j

≤ (1− β) ·

(

µ(ℓi,j)vi,j + ·
∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′

)

+µ(ℓκj ,j)vκj ,j −
1

∆
µ(ℓκj ,j)vi,j −

(

1−
1

∆

)

µ(ℓi,j)vi,j
︸ ︷︷ ︸

Y

.
(24)

We now upper bound Y :

µ(ℓκj ,j)vκj ,j −
1

∆
µ(ℓκj ,j)vi,j −

(

1−
1

∆

)

µ(ℓi,j)vi,j

=

(

1−
1

∆

)

µ(ℓκj ,j)vκj ,j −
1

∆
µ(ℓκj ,j)

(
vi,j − vκj ,j

)
−

(

1−
1

∆

)

µ(ℓi,j)vi,j

=

(

1−
1

∆

)

µ(ℓκj ,j)
(
vκj ,j − vi,j

)
−

1

∆
µ(ℓκj ,j)

(
vi,j − vκj,j

)

+

(

1−
1

∆

)
(
µ(ℓκj ,j)−µ(ℓi,j)

)
vi,j

=

(

1−
1

∆

)

µ(ℓκj ,j)
(
vκj ,j − vi,j

)
+

µ(ℓκj ,j)vi,j

∆

(

(∆− 1)

(

1−
µ(ℓi,j)

µ(ℓκj ,j)

)

−

(

1−
vκj ,j

vi,j

))

(a)

≤

(

1−
1

∆

)

µ(ℓκj ,j)
(
vκj ,j − vi,j

)
+

µ(ℓκj ,j)vi,j

∆

(

(∆− 1)−

(

1−
vκj ,j

vi,j

))

=

(

1−
1

∆

)

µ(ℓκj ,j)
(
vκj ,j − vi,j

)
+

µ(ℓκj ,j)vi,j

∆

(

(∆− 2)+
vκj ,j

vi,j

)

(b)

≤

(

1−
1

∆

)

µ(ℓκj ,j)
(
vκj ,j − vi,j

)

(c)

≤ (1− β)µ(ℓκj ,j)
(
vκj ,j − vi,j

)
.

(25)

where in (a) we recall ∆ ∈ (1,2) and ℓκj,j < ℓi,j from Equation (21) so that µ(ℓκj ,j)>µ(ℓi,j); (b) follows from

the fact that values are ∆-separated, so vi,j >vκj ,j from Equation (21) implies
vκj ,j

vi,j
≤ 2−∆; in (c) we used

the fact that β > 1
∆

so 1− β < 1− 1
∆

, and the fact that vκj ,j − vi,j < 0 according to Equation (21).
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Combining Equations (24) and (25) we get
(

β−
1

∆

)

·
(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j

≤ (1− β) ·

(

µ(ℓi,j)vi,j + ·
∑

j′ 6=j

µ(ℓκj ,j
′)vκj ,j

′ +µ(ℓκj ,j)
(
vκj ,j − vi,j

)

)

= (1− β) ·



µ(ℓi,j)vi,j + ·
∑

j∈[M]

µ(ℓκj ,j
′)vκj ,j

′ −µ(ℓκj,j)vi,j





(a)

≤ (1− β) ·



µ(ℓi,j)vi,j + ·
∑

j∈[M]

µ(ℓκj ,j
′)vκj ,j

′ −µ(ℓOPT

i,j )vi,j



 .

(26)

where (a) follows from µ(ℓOPT

i,j )≤ µ(ℓκj ,j) due to the fact that ℓκj ,j ≥ ℓOPT

i,j according to Equation (21).

Summing the above over all j ∈Li = {j ∈ [M ] : ℓi,j > ℓOPT

i,j } (see Remark 2.2), we have

lossi(x) =
∑

j∈Li

(
µ(ℓOPT

i,j )−µ(ℓi,j)
)
vi,j

≤
1− β

β− 1
∆




∑

j∈Li

µ(ℓi,j)vi,j +
∑

j∈Li

∑

j′∈[M]

µ(ℓκj ,j
′)vκj ,j

′ −
∑

j∈Li

µ(ℓOPT

i,j )vi,j





≤
1− β

β− 1
∆

(

W−i(x)+
∑

j∈Li

µ(ℓi,j)vi,j −
∑

j∈Li

µ(ℓOPT

i,j )vi,j

)

≤
1− β

β− 1
∆

OPT−i ,

(27)

which yields our desired upper bound for lossi(x). Here, the final inequality follows from the same argument

as Equation (8) in the proof of Theorem 4.1 (see Appendix C.1).

Finally, applying Proposition 2.1 w.r.t. upper bound of lossi(x) and since x∈F arbitrary, we obtain the

desired welfare guarantee lower bound.
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