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In online advertising markets, setting budget and return on investment (ROI) constraints are two prevalent
ways to help advertisers (i.e. buyers) utilize limited monetary resources efliciently. In this work, we provide a
holistic view of ROI and budget constrained markets. We first tackle the buyer’s bidding problem subject
to both budget and ROI constraints in repeated second-price auctions. We show that the optimal buyer
hindsight policy admits a “threshold-based" structure that suggests the buyer win all auctions during which
her valuation-to-expenditure ratio is greater than some threshold. We further propose a threshold-based
bidding framework that aims to mimic the hindsight bidding policy by learning its threshold. We show
that when facing stochastic competition, our algorithm guarantees the satisfaction of both budget and ROI
constraints and achieves sublinear regret compared to the optimal hindsight policy. Next, we study the
seller’s pricing problem against an ROI and budget constrained buyer. We establish that the seller’s revenue
function admits a bell-shaped structure, and then further propose a pricing algorithm that utilizes an episodic
binary-search procedure to identify a revenue-optimal selling price. During each binary search episode, our
pricing algorithm explores a particular price, allowing the buyer’s learning algorithm to adapt and stabilize
quickly. This, in turn, allows our seller algorithm to achieve sublinear regret against adaptive buyer algorithms

that quickly react to price changes.
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1. Introduction
In online advertising markets, advertisers run ad campaigns in which they bid and compete for
ad impressions through various forms of repeated auctions. To efficiently utilize limited monetary

resources that are allocated to a certain campaign, advertisers’ bidding strategies are typically subject



to financial constraints. Such constraints generally include budget and return-on-investment (ROI)
constraints. Budget constraints primarily reflect advertisers’ monetary limits due to organizational

planning, while ROI constraints enforces the desired performance/return on the amount of capital

spent Kireyev et al.| (2016), |Golrezaei et al.| (2018), Balseiro et al|(2019b). Both constraints are

empirically validated in practice (see e.g. |Auerbach et al. (2008)), |Golrezaei et al.| (2018)). In this

work, we study these financial considerations from two complementary aspects in online advertising
markets:

From the perspective of a buyer (advertiser), what is an optimal bidding strategy that achieves a
high utility while maintaining both budget and ROI constraints in the long run? From the perspective
of a seller (mechanism designer), what is an optimal pricing strategy against a buyer with both budget
and ROI constraints who aims to learn her bidding strategy?

Bidding under ROI and budget constraints. We consider a buyer who participates in
repeated second price auctions with some predesignated budget and target ROI, and aims to maximize
quasi-linear utility. The buyer is subject to a budget constraint which sets a cap on the her total
expenditure; and also an ROI constraint that requires the total accumulated valuation divided by
total expenditure to be at least the target ROI. The problem of interest is to learn how to bid under
both constraints.

The problem of learning how to bid only under a budget constraint has been studied extensively
in the literatureEl and is closely related to the more general area of online resource allocation subject

to capacity or packing constraints, which includes but is not limited to online knapsack (2018),

[Zhou et al.| (2008]), packing Seiden| (2002), Buchbinder and Naor| (2009), Feldman et al.| (2010),

Kesselheim et al.| (2014)), secretary problems Babaioff et al.| (2007, 2008), |Arlotto and Gurvich| (2019).

One of the common approaches for the problem with only budget constraints is the adaptation of a

“pacing” strategy, which is motivated by the primal-dual framework (see Balseiro and Gur| (2019),

! We refer readers to [Balseiro et al.| (|2021|), |Balseir0 and Gur| (l?OlQI) for a comprehensive study on budget management

strategies and their influences to the overall market. Also see [Feldman et al| (2007) for a study on advertiser budget

optimization for search-based auctions.



Balseiro et al. (2020al)). Although these primal-dual algorithms for budget constrained problems are
shown to have near-optimal performances in their settings, they cannot be generalized to deal with
ROI constraints as they cannot guarantee the buyer achieves a predetermined ROI target over all
auctions; see Section 3| for an example. Particularly, when there is no ROI constraint and one only
needs to deal with budget constraints, primal-dual algorithms would terminate when the budget is
depleted, making use of the fact that total buyer expenditure always increases in time. However,
this hard-stopping procedure is not valid with ROI constraints as the realized ROI may increase or
decrease over time, and can possibly drop below the buyer’s target ROI at some point.

Given this crucial observation, rather than designing a bidding strategy based on the primal-dual
framework, we develop a bidding strategy that is motivated by the structure of the optimal solution
to the primal (hindsight) problem. This solution admits a “threshold-based” structure that suggests
the buyer’s optimal strategy is to win all auctions during which the “value-to-cost ratio” is greater
than some threshold. This structure then inspires our threshold-based bidding algorithm which in
every period randomizes over two possible bids. We show that in a stochastic setting, our algorithm
can obtain a T-period regret in the order of O(v/T).

Pricing against single buyer with ROI and budget constraints. We complement our
study on learning how to bid with the seller’s online pricing problem: we focus on designing seller
pricing policies against a budget and ROI constrained buyer. In our pricing problem, as our of
our main challenges, both the buyer and seller adopt online algorithms to achieve their respective
objectives. Hence, the environment faced by the seller is neither stochastic nor adversarial. A similar
pricing problem is studied in |Braverman et al.| (2018), where they show that when an unconstrained
quasi-linear buyer adopts a certain class of learning algorithms, which they refer to as “mean-based”
algorithms (e.g. Follow the Perturbed Leader algorithm and EXP3), the seller can extract the buyer’s
entire surplus; see [Deng et al.| (2019)) for an extension of this work. In our work, due to the existence
of the ROI and budget constraints, it is not possible to extract the buyer’s entire surplus. Nonetheless,
we show that the seller can learn a revenue-optimal selling price by suffering an additive (sublinear)

revenue loss.



Designing pricing algorithms that eventually learn revenue-optimal selling price is cumbersome, as
the buyer’s model primitives (i.e. budget rate, target ROI, valuation distribution) are not known to
the seller. We overcome this hurdle by identifying a bell-shaped structure of the seller’s per-period
revenue function given that the buyer is clairvoyant and acts optimally. We exploit this bell-shaped
structure by designing an episodic binary search pricing algorithm. The episodic structure enables
the buyer’s algorithm to adapt to changes in prices and roughly speaking, allows the seller to obtain
regret in the order of how well the buyer reacts to changes in seller’s prices. This holds for our
proposed buyer bidding algorithm and any other buyer algorithm that is adaptive to changes in
prices.

We refer readers to Appendix [A] for an extended literature review.

2. Preliminaries

Notation. Let R, be all strictly positive real numbers. For integer N € N, denote [N]={1,2... N}
and Ay = {p elo0,1]V: D onen Pt = 1} be the N-dimensional probability simplex. For a real number
x € R, denote (x)4 as its positive part. For a vector a, denote ||a|| as the Euclidean norm of a. For
any two vectors a,b € R"™, let min{a,b} = (min{a;,b;}):cin) be the element-wise minimum. We write
a =bif and only if a; <b; and a = b if and only if a; > b; for all i € [n].

Model. Consider a buyer competing in repeated second price auctions over a finite time horizon
T > 2. During each period ¢ € [T], the buyer observes her (private) valuation v; > 0 for the auctioned
ad impression, and then submits a bid value b; > 0. If b, is greater than the highest competing
bid d; > 0, the buyer wins the auction and pays d;. Otherwise the buyer pays nothing. At the
end of the period, the buyer observes d; regardless of whether she won the auction or not. We
assume that the per-period valuation and competing bid pair (v, d;) is supported on some finite set
W={(v',d")...(v",d¥)} P which is known to the buyer. We call the occurrence of (v;,d;) = (v*, d*)

a type-k arrival during period ¢. For Sections [3| 4 and [5] where we study bidder’s bidding problem,

2 Continuous supports can be handled by discretization. This will cause additional buyer revenue loss, but by choosing

proper discretization sizes, buyer’s regret (defined later in Equation ) can remain sublinear in 7.



we assume there is a time-invariant occurrence distribution p = (p'..

.p¥) € Ak, unknown to the
buyer, such that that P ((vs,d;) = (v*,d*)) =p* >0 for V t € [T].

We assume all valuations and highest competing bids are strictly positive and bounded, and
{(v*, dk)}ke[K] are ordered such that Z—i > > Z—Z. Denoting 6% = 2—:, k € [K +1] as the value-to-cost
ratio of the type-k arrival, we thus have ' > 62 > ... > 6% > 95+ =0, where we define v+ =0
and d¥*! = 0o. We also write d = maxye(x) d* and d = minge (g d*.

Buyer’s objective. The buyer aims to maximize her cumulative expected utility
E [E te[T] (v, — audy) zt], where z, =1{b; > d,} is an indicator of whether the buyer won the auction in
period t. The expectation is taken over {(v,d;)}icir) and possibly the randomness in bids {b;}cr)-
Here, a > 0 can be viewed as the buyer’s private capital cost that normalizes the buyer’s accumulated
valuation with total expenditure. For simplicity, we assume v* — adF # 0 for all k € [K|. The private
capital cost utility model, which includes the quasi-linear (o« =1) and value-maximizing (o = 0)
utility models, is studied in various settings (e.g. see Balseiro et al.| (2019b))).

Buyer’s financial constraints and feasible bidding strategies. They buyer employs bidding
strategies that respect both a budget constraint and an ROI constraint. More specifically, a buyer
(non-anticipating) bidding strategy B (possibly randomized) induces bids {b? }err) where each

bid value b, can only depend on {(v,,d,,b?)},c;;—1j U {v;} and the randomness in the strategy.

Consequently, the resulting bids {btﬁ }: of strategy B should satisfy the following constraints:
ROIL: Y, iy B [(v; —vdy) I{b7 > di}] >0, Budget: >, E [dI{0] > d,}] < pT . (1)

Here, p > 0 is called the budget rate, v is the buyer’s target ROI such that v > a > OE| and the
expectations are taken w.r.t. randomness in {(v;,d,, b’ )}eerm- Note that satisfying the ROI con-
straint guarantees the buyer’s returns (measured by total accumulated value divided by total
expenditure) are at least the target ROI «, which can be seen by rewriting the ROI constraint as

ZtG[T] E[Ut]l{bf = dt}]/zte[T] E[dtﬂ{btﬁ > dt}] >7.

3 Note that when v < «, the ROI constraint becomes redundant.



We remark that both budget and ROI constraints are studied in an expected sense. Such “soft”
constraints are useful in practice due to the fact that real-world advertisers typically engage in many
different online advertising campaigns, so it is reasonable to maintain these financial constraints on
an aggregate level. We note that such soft financial constraints are also studied in mechanism design
and online learning literature such as Vaze| (2018)), |Golrezaei et al.| (2018]).

Buyer’s regret. We evaluate any bidding strategy by comparing its cumulative utility to the

best achievable utility in hindsight, which, for any realization X = {(v;,d;)},¢;p) is defined as

OPT(X;a,7,p) =max,cpoyr  Doepr (Ve — ady) 2 )
2
s.t. Ztem (vy —~ydy) z¢ > 0, Ztem dizy < pT

Note that we considered the LP-relaxation (i.e., z; € [0,1] rather than z, € {0,1}) of the hindsight
problem as our benchmark. Also note in contrast with the soft ROI and budget constraints that are
considered in expectation (see Equation , the constraints in the hindsight benchmark are “hard”
constraints. Later in Theorem [2] we relate the optimization problems w.r.t. hard and soft constraints.

We quantitatively measure the performance of any bidding strategy 3 that satisfies both ROI and

budget constraints in Equation (1)) against the aforementioned benchmark using the notion of regret:
Reg”(T,c,7,p) =E [OPT(X; %, 0) = Dyeqr (00 — ady) T{H) > dt}} : (3)

where the expectation is again w.r.t. all randomness over X = {(v;,d;)},¢7 and (VY-

3. A Primal-dual View for Financial Constraints and Failure of Pacing

The primal dual framework coupled with “pacing” has been widely used to resolve the online bidding

problem under a a hard budget constraint (see Balseiro et al.| (2020b,a)). Nevertheless, in this

section we argue that naively applying these approaches to the bidding problem under a single ROI

constraint does not necessarily guarantee satisfaction of the ROI constraint in the long run.
Overview of the primal-dual view and a pacing policy for budget constraints. Consider

the primal and Lagrangian of the problem where only the budget constraint is present:
Primal® = max, e 17 Ztem (v —ady)z  s.t. Ztem dizy < pT

LB(Z, )\) = )\pT"— ZtE[T] ('Ut — (Oé —+ A) dt) 2ty



where A >0 is the dual variable w.r.t. the budget constraint. The dual function is defined as
DualB()‘) = maxze[o,l]T LB(za )‘) = LB(Z*(/\)? :u) = )‘IOT + Zte[T] (vt - (Oé + )‘) dt)+ ’ (5>

where 2} (\) = argmax.,cp,1] L*(2,\) = argmax.,cjo1] (¢ — (o + A) d;) 2 is referred to as the optimal
hindsight auction outcome in period ¢ w.r.t. some fixed A > 0. It is easy to observe that z;(\) =

I{v; — (a4 X\)d; > 0}. Note that
E [Primal®] < miny>o E [Dual®(A)] = T'miny>o Ap+ 3 ik PP (W = (a+N)dF), , (6)

which also induces an optimal dual variable A\* = arg minys(E [Dual®(\)]. The primal-dual approach

aims to achieve this dual function upper bound via approximating the optimal outcome z;(\*)

in Equation through submitting a so-called “paced bid” b, = 74=. This is because by doing

so the realized outcome z; is identical to the optimal outcome z;(\*), i.e. z, =1{b, > d;} =I{v, >

(a4 A*)di} = 2z (N*). As A* is typically unknown, the primal-dual framework is usually coupled

with some learning algorithm such as dual Mirror Descent (e.g. see |Balseiro et al.| (2020b.a)) that

Ut
a+5\ :

maintains an estimate A >0 over time, and submits a corresponding paced bids b, = During
the run of the learning algorithm, the buyer intentionally stops the algorithm once the budget is
depleted to ensure the budget constraint is satisfied. Previous works show that pacing under this
primal-dual framework yields sublinear buyer regret against the dual upper bound in Equation @;
e.g. see Balseiro et al. (2021]).

Failure of the primal-dual view and pacing policy ROI constraints. Analogously, the

primal-dual framework and pacing can also be applied to the online bidding problem with a single

ROI constraint:
Primal® =max.coyr Do, (U —ade)ze st 30,y (00— 7di) 20 >0,
LRz, 1) = Sreny (1 ) v — (a4 4p1) ) 20, ™)

Dual®(p) = max_cp 7 L (2, 1) = Zte[T] (At p)ve—(a+yp)de),
where ;1 > 0 is the dual variable corresponding to the ROI constraint, and p* = argmin,,>¢ E [DualR(u)]

(A+p)ve

is the optimal dual variable. In this case, the paced bids become b; = vl

where i is some



estimate of p*. However, we present a simple problem instance that demonstrates this pacing strategy
motivated by the dual variable does not necessarily guarantee a nonegative expected cumulative

ROI balance, even when the optimal dual variable is known.

Example 1 Assume a =0, vy =v >0 for all t € [T], and d; = 2 Wp.p and % wp. 1—p

for some p € (0,1/2). Then, E[Dual®(p)] = pvT (1+ §)+ + (1 —pwT (1—%), and hence p* =

+

argmin, o E [Dual®(u)] = 2. In a hypothetical ideal world where the buyer knows p*, the paced bid

value during period t € [T is by = % = g—,’; Howewver, the cumulative expected ROI of this pacing
strateqy is yeqn B[00 =74 Wb > d] = pT (0= §) 12 > £} + (1~ p)T (0— 2) (&2 > 2} =

Tv (p — %) < 0. The final inequality follows from p < %

We remark that although pacing under the primal-dual framework allows the buyer to approximate
the dual upper bound with sublinear loss, the pacing strategy alone does not necessarily guarantee
primal feasibility (e.g. satisfaction of the budget or ROI constraint), so typically a “stopping mechanic”
is imposed. For instance, for online bidding with a hard budget (i.e. Ztem dizy < pT w.p.1), the
budget constraint is satisfied by terminating the pacing algorithm once budget is depleted. The
rationale behind such a hard stopping time procedure is that total expenditure is non-decreasing over
time. Nevertheless, such a hard stopping procedure is not applicable for the ROI problem since per
period ROI balance (v; —yd;) z; may be strictly negative, which means the cummulated ROI balance

until period ¢, namely ZTE[t] (v, —vd;) z;, may drop below 0 as time proceeds. This motivates the

needs for alternative bidding frameworks to ensure ROI and budget constraint satisfaction.

4. A Reformulated Problem and the Threshold-based Optimal Solution

In this section, we first introduce a reformulation for OPT({v,, dt}te[T] ;a,7y, p) whose closed form
solution admits what we refer to as a “threshold-based structure”. This insight will later motivate
our bidding strategy in a very straightforward manner. To begin with, we consider the following

optimization problem for any n € RY and ¢ > 0:
U(n;a,y,c) = max,e )k Zkem n* (v* — ad®) z*

st D kex n* (vk —yd*) z* >0, > ke[K] nFdkzk <c



Here, the decision variables z* can be interpreted as the proportion of auctions during type-k arrivals
won by the buyer. The following proposition shows that U(n;a,~, pT") and OPT({vy, dt}te[T] QLY P)

are closely related.

Proposition 1 Define N* = Zte[T]H{(Uhdt) = (v*,d*)}, and write N = (N*)e(x). Note that N*

is a random variable, and E[N*] =p*T. Then OPT({vt,dt}te[T] sa,y,p) =U(N;a,y,pT).

The proof of this proposition can be found in Appendix Before we discuss the solution to the

reformulated problem, we introduce the notion of a threshold vector to simplify notation.

Definition 1 (Threshold vectors) We say that an K-dimensional vector x € R¥ is a threshold
vector if it takes the form of x = (1...1,q,0...0), where the first J € {0,...K} entries are 1s,
followed by some number q € [0,1), and trailing with (K —J — 1), 0’5E| Any threshold vector is
uniquely characterized by its dimension K, as well as, a tuple (J,q) € {0,... K} x[0,1), so we denote

the vector as (J,q). In the special case when J =K, take ¢ =0.

We remark that for any two threshold vectors a,b of the same dimension, min{a,b} is also a
threshold vector. Furthermore, either a < b or a > b. Using this definition of threshold vectors, the

following Theorem [I|states that the optimal solution to U(n;a,~,c) is a threshold vector.

Theorem 1 (Threshold-based solution) FizneRY, ¢>0, v>0, and let n®+' = oco. Deﬁne

Skelr nFwh
r= max{k €[K]: Zée[k] n’ (v’ —~yd*) > O}, qf = =keld

nrHL 1]
o )
c— n"d
b:max{k'e[K]:Eee[k]nédzgc}, and  ¢° = — 45—,
If we let * =1)(r,q*) and x® =1 (b, q®) be two threshold vectors, then x* = min {x*, x® 1)(k,,0)} is

an optimal solution to U(n;a,~,c). Here, k, =max{k € [K]: v* — ad® > O}E Furthermore, x* is

also a threshold vector characterized by tuple (J,q) where

J=min{r,b,r.}, g¢=z""" =min{z®" 2} I{J+1<k,}. (10)

4 For the edge case of (1,...1) € RX, J =K and hence the number of trailing 0’s is (K —J —1); =0.
51In the rest of the paper B, R will be the shorthand notation for “Budget” and “ROI” respectively.

6 Y(Ka,0) is the threshold vector whose first ko entries are 1’s while the rest are 0.
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Remark 1 We note that the variables (b,r,J,¢*, ¢*, q, x* x* x*) in Theorem depend on the param-
eters m,a,y,c. In the rest of the paper, if not stated otherwise, we set n =p and c = p when

computing the aforementioned variables.

For the proof of this theorem, please see Appendix[D.2] The structure of the optimal solution x*
that we characterized in Theorem [I| suggests in hindsight the buyer should win all auctions with
arrival types 1,2...,J where the threshold J = min{r,b, k,}, and win a ¢ proportion of the auctions
with arrival type J+ 1 while ignoring all other arrival types J+2... K.

Threshold-based bidding strategies. Now, we demonstrate how we can transform the idea of
having the bidder “win all auctions with arrival types 1,....J” as illustrated in Theorem [I] into a
practical bidding strategy. We point out that instead of considering a threshold for arrival types, we
can equivalently study the value-to-cost ratio for each arrival type. Since the value-to-cost ratios (i.e.,
0" =v'/d', i € [K]) are ordered such that 6' >...6%, Theorem [l| suggests that the buyer wins the
auction during period ¢ if the value-to-cost ratio v;/d; is at least 7, and win with probability 1 — ¢
if v;/d; is 7+, This value-to-cost ratios viewpoint thus motivates the following bidding strategy

which we call a threshold-based bidding strategy.

Definition 2 (Threshold-based bidding strategy) Recall that 6% =v*/d* for any k € [K]. For
some threshold type k € [K]| and remainder probability q € [0,1), a threshold-based bidding strategy,

denoted by B(v;k,q), maps valuation v to bid value v/0% w.p. ¢ and v/0* ! w.p. 1 —q.

In the threshold-based strategy, when the buyer submits v, /6%, she wins the auction if v; /6% > d,,
which is equivalent to having the value-to-cost ratio during the current period v;/d; to be greater than
the threshold value-to-cost ratio #*. Similarly, submitting bid value v;/6**! allows the buyer to win
the auction if current period value-to-cost ratio is greater than ¥, In light of this threshold-based
bidding strategy, the following theorem states that submitting threshold bids w.r.t. the optimal
threshold #7 and remainder probability ¢ is not only optimal, but also satisfies both budget and

ROI constraints. The proof of this theorem is detailed in Appendix [D-3]
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Theorem 2 (Optimal threshold-based bidding for known p) Let (J,q) be defined as Theo-
rem |1} w.r.t. n=p and ¢ = p. If for each period t € [T]| the buyer submits threshold bid b, =
B(v, J,q), then E[3 -, iy (ve — ady) 1{b, 2 di }] = TU (p; v, v, p) = E[OPT({ve, di }, iy 5 7, p)]. Fur-

thermore, this bidding strategy satisfies both budget and ROI constraints in Equation .

We remark that when capital cost o > 1, the optimal threshold 67 = max{6°,6" a} > 1, suggesting
the buyer should always underbid. This means overbidding is possible when 0 < o < 1.
5. Online Threshold Bidding Algorithm
In this section, we introduce our bidding framework that harnesses the threshold-based bidding
structure described in Theorem [2] We refer to our proposed bidding framework as Conservative
Threshold-based Bidding under Budget and ROI Constraints (CTBR). The framework consists of
three components, namely learning algorithm A; confidence bound #;, and threshold-based bidding.
Learning algorithm A. The framework takes in any learning algorithm 4 that maps the current
distribution estimate p, and historical data {v,,d-,b;}-c;i—1] to an updated estimate. We point
out that a merit of the CTBR framework is that the freedom to choose any learning algorithms
enables advertisers to customize their own learning algorithms according to practical considerations,
including but not limited to employing non-standard learning algorithms that are robust to corrupted
or outlier data that is perhaps originated from behavioral anomalies or market shocks (e.g. see
Lykouris et al| (2018]), (Gupta et al| (2019))). Here, we present two simple learning algorithms as
illustrative examples, namely empirical estimation (EE) and Stochastic Gradient Descent (SGD).
Let s; = (I{(vi,d;) = (v*,dY)}, ..., T{(vs,d;) = (v,d¥)}) € {0,1}¥ characterize the occurrence of

each arrival type in period t. Then the two algorithms update estimates for p as followed:
EE: pipi=(t-p+s)/(t+1), SGD: pPpi1=argmingen, |p— (P —me)ll- (11)

where for SGD, g, = p; — s, is a stochastic gradient of the function f(p) = 3||p — pl||* at the point
p =p;, and n, is called the step size at period t. We note that SGD is generally associated with

either vanishing step sizes (e.g. n, = 1/+/t or 1/t), or constant step sizes that can possibly depend on
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the total number of periods T'. For more details on related descent methods, see e.g. |Cohen| (1981)),
Boyd et al.| (2004).

Confidence bound ¢;. The CTBR algorithm also takes in a sequence of confidence bounds
{li }1eim) to construct conservative estimates of the optimal arrival-type threshold J and the remainder
probability ¢ based off A’s distribution update p;; see Equations and . Recall that the
1 — ¢ is the winning probability that the buyer hopes to attain during type-(J + 1) arrivals. The
confidence bounds in 7; and l;t allow the buyer to obtain more accurate estimates for the threshold
types r and b respectively when ¢ increases (see Lemma [3| of Appendix . On the other hand, the
confidence bounds in the estimates ¢& and ¢} make bids more likely to take the smaller value v,/ 07
rather than the larger value v,/07+! (since 67t < §7t+1). We note that bidding smaller values results
in higher ROI and lower expenditure, and hence the bias towards lower values of §; helps the buyer
satisfy both budget and ROI constraints. E]We remark that these confidence bounds can be viewed
as the estimation accuracy of the input algorithm A: later in Theorem [3] and [d we show that when
¢, satisfies ||p — py|| < ¢; with high probability, CTBR achieves low regret. That being said, as we
show via numerical studies in Section satisfying the condition ||p — p;|| < ¢; is not essential in
the sense that CTBR algorithm maintains good performance even for naive choices of ¢;.

Threshold-based bidding. Motivated by the threshold-based bidding strategy in Theorem [2]
CTBR submits a threshold-based bid (see Definition [2)) w.r.t. the conservative estimates of the
optimal arrival-type threshold J and the remainder probability q.

The bidding framework is detailed in Algorithm [I, in which for notational simplicity, for any
k € [K + 1], we define w* = v* —vd* (where wX*! = —00). We further assume w* # 0 so that the
buyer’s hindsight problem U (p;«,~, p) admits a unique optimal threshold-based solution. Also, in

7 Smaller bids result in lower marginal expenditures, and thus higher realized ROI. For instance, assume d; = 1 w.p.
1/3 and d¢ =2 w.p. 2/3. If the buyer with fixed valuation 1 submits bid value 1, she only wins the auction and attains
value 1 when the highest competing bid is 1. Hence, both her expected accumulated value and expected expenditure
are 1 x 1/3=1/3, so her realized ROI is i—?g = 1. If the buyer submits bid value 2, she always wins the auction and

attains value 1, but her expected expenditure is 1 x 1/3 42 x 2/3 =5/3, resulting in a lower realized ROI of 5%3 =3/5.
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the remaining we will assume >, ., p*w" #0, 37, p*w* #0, and p— 37, p*w” # 0 to rule out

edge cases that complicate analysis without providing additional insights.

Algorithm 1 Conservative Threshold-based Bidding under Budget and ROI Constraints: CTBR 4
Input: Learning algorithm A, time-dependent confidence bound ¢; (possibly depending on T').

1: Initialize J; =1, p1 = (1/K...1/K) € Ax, 1 =0.

2: fort=1,2,... do

3: Follow threshold-based bidding strategy: Observe valuation v: and submit threshold bid b; = (v, jt, Gt)-
After submitting bid b;, observe highest competing bid d;.

4: Update estimate of distribution p by invoking algorithm A: piy1 = A(pr, {v-,dr,br}repy)-

5: Update threshold vectors: &7, ; = (13t+1, (cjf+1)+) and £}, =1 (ft+1, ((j?+1)+), where

R y , B " ElE[f‘t+1] prw’ — (VE+2)we,
I max{k E[K]: X pepy Pryrw” > —\/wat} and gy, = f¢+1+1| ]

Py w
ﬂfzee[iwrl] prd’—(VE+2)de; (12)

Z)t+1 :max{k €[K]: Zée[k] Prpdt < p+ vKth} and §f,q = T
Py

6: Update the threshold-based bidding strategy: Calculate &; = min {&7,1,#}11,7%(ka,0)} = U(Jer1,Ger1)

where jt+1 and §i41 are:
2 . o 2 R . AR Jip1 BoJit1 2
J+1 =min§ fe41,be41, k0 ¢ and Ger1 =min{ 205, 20 I Jep1 +1< Ko - (13)

7: end for

Remark 2 In Equation @), we always have §f,,,q;,, < 1. This is easy to see via combining

two observations: (1) ﬁf“lﬂ >0, and w'+1*1 < 0. These inequalities hold because if ﬁf“lﬂ =0

or w1t > (), Eée[ft+1+1] Py wt > ZZE[T%H] piw' > —VEKwlA(t,8), which contradicts the max-

imality of Try1; (2) By the mazimality of 7,1, we know that Zee[nﬂﬂ] piwt < —VEwl, <0 so
AP +1 APt p1+1

Zeemﬂ]ﬁfﬂw@ < —pht T Wt Dividing both sides by —p iyt w1t >0 concludes ¢f, < 1.

A similar argument also implies §7,, <1.

As of our main result for this section, we theoretically show performance guarantees for our
proposed CTBR framework. Due to space limitations, in the following theorem, we present an
informal statement on the regret of CTBR. For a more detailed statement, we refer readers to

Theorem [§]in Appendix [B] where we include additional results and discussion for Section [3]
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Theorem 3 (Regret of CTBR) Let {pi},.;;y be the estimates of learning algorithm A and
assume the input confidence bound ¢, : (0,1) — Rt is decreasing in t, lim; 7o, £; =0, ﬂ and satisfies

P(|lp—p:l| <€) >1— L. Then for large T, bidding according to CTBR 4 satisfies both ROI and

1
T.
budget constraints in Equation , and the regret is Reg(p, T, a,7y,p) = (5(Zt€m ly).

To put the performance of the CTBR framework in more detailed context, in the following
theorem, we present CTBR 4’s regret when the learning algorithm A is EE and SGD respectively;

see Equation . We again refer readers to Theorem |§| in Appendix [B| for a formal version of the

statement.

Theorem 4 (CTBR 4 with EE and SGD) (i) When A is EE, or SGD with vanishing step
size 1, = 1/t, CTBR with input confidence bound €, = ©(1/\/t) incurs a regret of O(T). (ii)
When A is SGD with constant step size n, =n =T"2/3, CTBR 4 with input confidence bound ¢, =
o((1- 277)”2 + /) incurs a regret of O (T2/3). Finally, in the aforementioned scenarios (i) and

(ii), CTBR satisfies both budget and ROI constraints in Equation (I)).

5.1. Numerical Study on Learning How to Bid
This section presents a numerical study regarding the CTBR framework. We consider three regimes,
namely ROI dominant, Budget dominant, o dominant, each corresponding to model primitives
(ct,7, p,p) such that in the optimal solution of the reformulated problem U(p;a,, p) in Equation 7
the ROI constraint is binding, the budget constraint is binding, and both constraints are non-binding,
respectively. With a slight abuse of notation, we use R,B, and A to denote the ROI dominant, Budget
dominant, and a dominant regimes respectively.

Our experimental setup is described as followed. We fix capital cost &« =1 and consider three
sets of parameters (7%, p?) = (1.2,0.05), (7%, p*) = (2.1,0.4) and (1*, p*) = (1.2,0.4), associated with

each regime respectively. For each regime y =R,B, A we generate N =100 probability distributions

& Note that the confidence bound ¢, may depend on both the current period ¢ and total horizon length T'; e.g. see

SGD with constant step sizes in Theoremlﬂ
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P¥' e Ak (i=1,... N) uniformly at random such that {(a, ", p?, P¥") };c;n] belong to the respective
regimes. Here, each of the K entries in P are sampled from Uniform(0,1), and then rescaled by
the sum of all entries to form a probability distribution. Then, for each set of model primitives
(a, 7Y, p¥, P¥") (y € {R,B,A},i € [N]), we sample T'= 10,000 independent pairs {(v,d;) }er) from
Pvi e Ak supported on W C {0.2,0.4,0.6,0.8,1}? where K = |W|=19.

CTBR implementation robust to ¢;. Although buyers may not know the exact ¢, that satisfies
the high probability bound condition in Theorem [3| here we demonstrate that from a practical
viewpoint CTBR is robust to simple choices of ¢;. For y € {R,B,A} and each set of model primitives

in {(o,7Y,pY, P¥") }s¢c(n), we run CTBRgg with confidence bound ¢, = %}\/ﬁ for s =1, %, ,1

max{d,

Y

respectively over the T periods. Here max{d, u_)}\/f is a normalization factor for illustrative purposes.
In Figure [1| we observe that for all s, CTBRgg achieves high utility and a realized target ROI
greater than the target most of the time, demonstrating that CTBR with naively chosen confidence
bounds produces fairly robust outcomes in general scenarios. An interesting insight from Figure
is the tradeoff between utility and realized ROI as s varies: at fixed ¢, larger s corresponds to the
buyer being more aggressive and thus willing to win auctions with smaller value-to-cost ratiosﬂ via
submitting larger bids. This would result in higher utility but reduce realized ROI as the marginal
cost increases. Finally, we comment that the worst case realized ROI occurs in the ROI dominant
regime (where the buyer aims for a 210% return) for s =1/2. Here, ROI target is achieved in only
~ 65% of instances, yet we note that this is mainly because as s decreases, CTBRgg converges more
slowly, so our T'= 10,000 is relatively small and CTBRgg did not yet converge for s =1/2. For
more details on convergence see Figure [4] in Appendix [C]

Comparison with benchmark bidding algorithms. We also compare CTBR with four bench-
mark bidding algorithms, namely Conserv , Budget-Pacing, ROI-Pacing and Pacing. Fixing buyer

parameters (a,7, p), submitted bids for each benchmark are as followed. Conserv simply bids v,/

¥ Equation states that larger ¢, yields larger 7:41 and i)t+1. This may result in a larger estimate for the threshold

arrival type J, corresponding to smaller values of 07 and thus higher thresholded bids b; = vt/Gj.
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in each period to guarantee realized ROI is greater than the target ROI v with probability 1. For
the other pacing-type algorithms, denote A and [1; as the estimated dual variables in period ¢ corre-

sponding to the budget constraint and ROI constraints respectively for the optimization problem in

Equation . Then, Budget-Pacing bids ai’}t, ROI-Pacing bids %, and Pacing bids %
Note that the dual variables )\, and f1; are updated via projected stochastic sub-gradient descent (see
Balseiro et al.| (2021))). We include the pseudocode of each benchmark in Appendix [C| For CTBR
we run CTBRgg with confidence bound ¢, = W. In Figure (Left), we observe CTBRgg
achieves nearly the largest per period utility > te[T) (v —dy)z/T in all regimes, and significantly
outperforms pacing-type strategies. This is primarily because the benchmark algorithms either
deplete their budget too slowly (e.g. see the budget depletion trajectory for these benchmarks in
the a-dominant regime in Figure [2| (Right)), resulting in less auction wins and hence lower total
utility; or they deplete their budget too quickly (e.g. see the budget depletion trajectory for Conserv,
ROI-Pacing and Pacing in the Budget-dominant regime), and miss out opportunities to learn the
best bidding strategy, leading to low overall utility. In contrast, CTBR strikes a balance between
“learning" and “budget depletion" so that the improvement of bidding decisions occurs at a moderate

rate as expenditure increases.
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Figure 1 CTBR robustness. The figure shows performance metrics for CTBRge run with ¢, =
%, %, %, 1 in ROI dominant (Left) and budget dominant regimes (Right). For o dominant regimes, all metrics
are nearly the same across s and due to space limits we omit the results. Per period utility is normalized by

Optimal utility U(p; ,, p). Each box plot is w.r.t. N =100 probability instances. Results suggests even for

simple choices of /;, CTBR can achieve high utility while maintaining ROl constraints in most scenarios.



17

—— Conserv —— ROIl-pacing —— CTBR

I Conserv Il ROl-pacing [ CTBR . .
Budget-pacing —— Pacing

[ Budget-pacing I Pacing
12

0.501 ROIDom

- “%
0.00

1.

0 BudgetDom
0.5
0.0
0 AlphaDom
0.5
. !
.
0.0

ROIDom BudgetDom AlphaDom 0 2000 4000 T 6000 8000 10000

—iH
it
Hh

o
N}

Normalized Per Period Utility
s o o
2 8 &
Proportion of Budget Depleted

o
o

Figure 2 Performance comparison with benchmarks. (Left): Normalized per-period utility. Each box plot is con-
structed with NV = 100 probability instances. (Right): Trajectory for proportion of budget depleted. The
shaded area represents the standard deviation of budget depletion over N = 100 probability instances. These
results suggest CTBR outforms other benchmarks because, universally across all regimes, CTBR maintains

a better balance between budget depletion and learning optimal bidding decisions.

6. Pricing Against an ROI and Budget Constrained Buyer
Here, we take the alternative perspective of the seller and consider the pricing problem against
a single ROI and budget constrained buyer. In this scenario, the second price auction effectively
becomes a posted price auction, where the seller’s price takes the role of highest competing bid value
d;. More specifically, the buyer still decides on some bid value b;, but instead of having the buyer
actually submit the bid, the buyer decides to take the item at period t and pay price d; if by > d;,
or leave the item and pay nothing otherwise. That being said, any bidding strategy (e.g. CTBR4)
for the second price auction can be effectively transformed into a “take or leave” strategy for the
posted price auction. We note that the seller does not get to observe the buyer’s “bid” but instead
only knows whether the buyer took the item or not.

Seller’s pricing problem. Consider the seller committing to a finite price set D= {D" },,cu
where D! > ... > DM The seller sets a price d; € D during each period against a value-mazimizing
buyer (whose capital cost a = 0). E Then, the buyer observes both d; and its valuation v; and

10 In the posted price setting, assuming the buyer’s capital cost o =0 is without loss of generality. This is because
before the buyer makes a take/leave decision, she gets to observe both her valuation v: and price d:. Hence, in the
buyer’s hindsight problem OPT({vt,dt}tem ;a,7, p) defined in Equation , the buyer can rescale her valuations
by setting v = v+ — ad: as well as her target ROI ¥ =+ — «. This will result in the equivalent hindsight problem
m({’ﬁt,dt}tem 50,9, p) 1= maXcio )7 Doyepr) Utz 86D e (06 —Ydi) 2e = 0, 32,y deze < pT', which implies

that we can simply assume a = 0.
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makes a take/leave decision z; € {0,1} based on some learning algorithm that satisfies both ROI
and budget constraint in Equation . Here, we assume that the buyer’s valuations are supported
on the set V ={V"},¢n) where V! > ... > V" and associated with some probability distribution
g € Ay such that P(v, = V") = g" for any period t € [T]. On a separate note, {D™},,cia and
{V"} vy can be thought of as the unique values of highest competing bids and valuations in the
set W = {(v¥,d*)}rex) of the previous sections, i.e. W =V x D, where K = M N. Furthermore,
imposing any distribution g € Ay, on support D, combined with distribution g on V, induces a
product distribution p=g x g over W.

The buyer’s target ROI v and budget rate p are private to the buyer and is unknown to the
seller. Both the seller and the buyer do not know the valuation distribution g, and hence learn how
to price and make take/leave decisions respectively as time proceeds. In other words, the posted
price auction involves a two-sided learning paradigm where both the seller and buyer adopt different
online decision-making strategies that interact with one another. Our goal is to better understand
whether we can design an effective pricing algorithm facing an environment that is driven by the
buyer’s unknown algorithm.

Seller’s regret. We evaluate the performance of any sequence of pricing decision {d; }:eir) € D*
by benchmarking its realized revenue, namely > te[T] d; 2z, to the maximum revenue that could have
been obtained if the seller had set a fixed price over all T" periods assuming the buyer makes optimal
decisions. Mathematically, we first rewrite the buyer’s problem in Equation as followed for any

fixed seller price d € D as

U(d) =maxgcion 2 ,en 9" V2" st.30, 9" (VI —yd)a" 20, and dy -, v g"z" <p. (14)

In light of Theorem (1} we let x, € [0,1]" be the unique optimal threshold solution to U(d) for any

d € D, and note that the optimal solution induces a per-period expenditure of

m(d):=d, v 9" %5 s (15)
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which is also the expected per-period revenue of the seller when the buyer knows g and acts optimally.
We will refer to m(-) as the seller’s revenue function. Here, we remark that -\, g"zj is the
probability that the buyer decides to take price d. Then, for any sequence of pricing decisions

{di }1epr) € DT, we define the seller’s regret over T periods to be
Reg,. = T'maxgep 7(d) — Zte[T] Eldz] (16)

where the expectation is taken w.r.t. {(v;,d;)} and randomness in the buyer’s strategy.

The benchmark U(d) is in fact equivalent to our definition of U(p;0,7, p) in Section [4} Assume the
seller sets price d, = D™ € D for some m € [M] and for all ¢t € [T]. In this case the buyer’s hindsight
benchmark is given by OPT ({v;, D™} rerr) 0575 p). Under this fixed price scenario, d; can be viewed
as being drawn from the distribution e™ € Ay, (m’th unit vector in RM), which then induces the
product distribution p =g x €™ € Ax over W. Then, it is not difficult to see for any m € [M], U(D™)
is equivalent to U(g x e™; O,W,p)ﬂ This equivalency between U(d) and U(p;0,7, p) suggests that
the benchmark U(d) indeed implies optimal buyer actions, as for any m € [M] such that D™ € D, we
have U(D™)=U(g x €™;0,7,p) > E [OPT({vt,Dm}te[T] ;0,7,p)], where the final inequality follows
from Theorem [2l

Finally, we remark the seller’s regret resembles that of an M-arm multi-arm bandit (MAB) problem
(see |Lattimore and Szepesvari| (2020) for a detailed introduction), where we can view each price
D™ e D as an arm and D™z; to be the reward by pulling arm m. Nevertheless, we point out that
our problem is more complex as the seller’s reward D™z; for setting price D™ during period t is
related to the buyer-specific algorithm, which likely depends on the buyer’s past decisions as well
as past prices set by the seller. Although our pricing problem is more difficult than MAB which

! Consider any decision vector & € [0,1] that is feasible to U(g x €™;0,7,p). Using the definition that p =
g x e™, we have p* = ¢" is (v",d") = (V",D™) and p* = 0 otherwise. Thus, the objective of U(g x €™;0,7,p),
namely ZkG[K] pFoF TR = ZnG[N] D hwk—y N pFoFEk = ZnG[N] ¢"V"z™ where z™ is the change of variable for Z* when
k € [N] satisfies (v*,d*) = (V™,D™). A similar argument shows that the two constraints are also equivalent, i.e.

Zke[K] p*d*st =D ZnE[N] g"z" and Zke[K] p* (”k - 'de) 7t = ZnE[N] g" (V" —yD™)z".
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typically requires the decision maker to explore all M arms, in the next section we demonstrate
that by exploiting the special structures of our problem, we only need to explore O(log(M)) arms
(prices).

6.1. Bell-shaped Structure of the Revenue Function

In this section, we first motivate our pricing algorithm by analyzing some underlying structures
of the seller revenue 7(d) defined in Equation . The goal of this section is to develop efficient
ways to identify argmaxgep m(d) by avoiding exploring each possible price in D which will result
in a regret that scales linearly in the number of prices M. In the rest of the paper, we make the
following assumption to rule out trivial problem instances (e.g. cases when the optimal solution x4

corresponding to some d € D has all 0 entries or when one of the constraints are redundant):

Assumption 1 For any d € D, assume VN —~vd <0, V! —~vd >0 and Y one (V" —d)g" # 0.

Furthermore, assume d > p and d < p.

To begin with, we categorize all prices d € D according to whether constraints are binding under

the corresponding optimal solution ag.

Definition 3 Fiz target ROI v, budget rate p, valuation distribution g € A and selling price d € D.
Recall x4 is the optimal threshold-based solution to U(d) in Equation . Then we say d 1s
e Non-binding, if under x4, both constraints are mon binding, i.e., dznem gzl < p and
Yoney (VT =7d) gz > 0;
e Budget binding if under x4, the budget constraints is binding, i.e. dznem grxly = p and
>oney (VT =d)g"ay > 0;
e ROI binding if under x4, the ROI constraint is binding, i.e. ZnE[N](Vk —~d)g"zl; =0 and
A e 9" < p-
It is apparent that any price d € D must belong to at least one of these categories. Also, if a

price is non-binding, it cannot be budget binding or ROI binding. However, it may be possible

that a price d is both budget binding and ROI binding. This can only occur for certain model
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primitives p,~,g. We also point out that for any budget binding price d € D, the seller would like to
extract the entire budget from the buyer since the per-period revenue under optimal buyer action is
m(d) = dZne[N] g"zq=p:

Our main result of this subsection is the following Theorem [3, which states that as we traverse
D in increasing price order, prices are first non-binding and the revenue 7(d) increases in d; then
prices become budget binding, where revenue remains constant at m(d) = p; finally prices become

ROI binding, where 7(d) decreases in d. The proof can be found in Appendix

Theorem 5 (Bell-shaped Structure of the Revenue Function) Suppose that Assumption
holds. Then, the following hold
1. For any non-binding prices d,d, if d < d then m(d) < m(d).
2. If d is budget binding, any price d > d cannot be non-binding, which means d is budget binding
or ROI binding.

3. If d is ROI binding, then any d > d must also be ROI binding. Furthermore, 7(d) > m(d).

We provide an illustration of Theorem [5|in Figure 3 that depicts the “non-binding — budget binding
— ROI binding” transition phenomenon, as well as a corresponding revenue “increase — plateau
— decrease”, as we traverse prices in increasing order. We note that for specific model primitives
g,7, p, there may exists no budget binding prices (as shown in right subfigure in Figure , meaning
that there are scenarios in which it is impossible for the buyer to extract the entire buyer budget.
Nevertheless, this transition phenomena suggests that we can efficiently identify the maximizing
revenue arg maxqep 7(d) by utilizing a simple binary search approach. Hence, we utilize this structure
of 7(d) to motivate our pricing algorithm.

6.2. Pricing Algorithm against an ROI and Budget Constrained Buyer

The main challenge the seller faces is her lack of knowledge on the buyer’s model primitives, namely
the buyer’s valuation distribution g, target ROI ~ and budget rate p. Furthermore, the seller has
limited information feedback as she only observes whether the buyer took the price or not, i.e., the

seller only observes the outcome z; € {0,1}. This lack of information makes it very difficult for the
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seller to estimate the buyer’s model primitives. Nevertheless, we propose a simple pricing algorithm
that bypasses this lack of knowledge via exploiting the price transition phenomenon as characterized
in Theorem [5| and Figure [3, We demonstrate that this algorithm achieves good performance when

facing a general class of algorithms that is adaptive to nonstationary environments.

0.20

—y =17
0.15 wop =02 | [ Non binding
m(d) 0.10 Budget binding
0.05 £ ROI binding
000 11] 4 I
0.1 0.2 0.2 0.3 0.4 0.5
d
Figure 3 Seller revenue function bell-shape structure. Model primitives: number of unique buyer valuations N =6,

valuation set V = (0.6,0.5,0.4,0.3,0.2,0.1), valuation distribution g = (0.1,0.1,0.2,0.1,0.2,0.3), number of
unique selling prices M = 21, seller price set D = (0.5,0.48...0.1), buyer budget rate p = 0.2, capital cost
a = 0. The left and right subfigures correspond to target ROl v = 1.3 and 1.7 respectively. In both cases,
prices transition from non-binding to budget binding, and finally to ROI binnding. Revenue 7(d) increases
as in d when prices are non-binding, decreases in d when prices are ROl binding, and remains at p when

prices are budget binding. Note that when v = 1.7, there are no budget binding prices.

Our proposed pricing algorithm consists of an exploration phase and an exploitation phase. During
the exploration phase, the algorithm searches for a revenue maximizing price D* € arg maxgep 7(d)
through an episodic structure: the seller initiates the first episode &, and fixes the price chosen in
this episode D; for E consecutive periods. At the end of the episode (i.e. after E periods since the
beginning of the episode), the seller records the average per-period revenue #(D;) = % Y oie £, %t
where z; € {0,1} indicates whether the buyer takes the price at time ¢ € £;. The process then repeats
as the seller moves on to episodes &,,... This exploration phase eventually terminates when the
seller has explored enough prices. The seller’s pricing decision in each episode is governed by a binary
search procedure over the set D, such that every price is chosen at most once across all episodes, and

the exploration phase will have O(log(M)) episodes. Our pricing algorithm is shown in Algorithm
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We note that our proposed algorithm does not try to learn the buyer’s model primitives. We
further point out that such a binary-search approach is a natural choice to identify revenue-optimal
prices in the simplest monopolistic pricing setting under a typical unimodal assumption, E and
one may wonder whether this approach can have good performances against a much more complex
setting where the buyer is ROI and budget constrained and aims to learn her optimal bidding
strategy. Surprisingly, in the next section we are in fact able to show this simple approach achieves

good performances against buyers who are adaptive to price changes.

Algorithm 2 Binary Search Exploration Exploitation

Input: Episode length E.
1: Initialize iteration index iter = 1.
2: |Exploration)]:
3: Set D! for E consecutive periods, and record per-period revenue # (Dl). Then set DM for E consecutive periods,
and record per-period revenue 7 (D).
4: Set m* + argmaxe(1,my 7 (D™) L=1, R=M, med = [“LE].
5: while L <R do

6: iter < iter + 1.

7 if per-period revenue 7 (Dk) is not recorded for k = med, med + 1 then
8: Set price D* for E consecutive periods and record per-period revenue # (Dk) for k =med, med + 1
9: end if

10:  if # (D) <& (D™*) then

11: Set m* «— argmax,e fm* med+1} 7 (D™), L 4 med + 1, med + | 2% |
12: else

13: Set m* «— argmax,e {m* mea} 7 (D), R~ med — 1, med < L#j
14: end if

15: end while

16: [Exploitation]: Set price D™ for the remaining periods.

12 Tn monopolistic pricing, the revenue-optimal price p* is charachterized by p* = arg max, pF(p), where F is the cdf

of buyer valuations. A typical assumption is such that the function pF(p) is unimodal.
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6.3. Regret Analysis of Our Pricing Algorithm

In this section, we provide theoretical guarantees for our proposed pricing algorithm against a class
of buyer’s bidding strategies. Recall that the seller is pricing against a buyer who is subject to
both budget and ROI constraints, and adopts some algorithm that satisfies both ROI and budget
constraint in Equation to maximize total cumulative value. The class of strategies that we
consider imposes some notion of adaptiveness to non-stationary environments, as discussed in the

following definition.

Definition 4 ( {-Adaptive Bidding Strategies) Assume the T-period horizon is divided into H
consecutive episodes & ...Ex, i.e.ZhE[H] |En| =T. In each episode h € [H] , the seller sets a fized
price Dy, € D, and the buyer decides on a binary sequence of take-or-leave actions {z ey € {0,117
Then we say a buyer’s strategy is {-adaptive for € € (0,1) if

1. Adaptivity: there exists a universal error function ¢ : N x N — [0,1] decreasing in the first

m(Dy)

DL
B Y e, 2 — BB < 9(1E,],T) wop. at

argument such that for all episodes h=1,2,...H,

least 1 — %

2. Stability: there exists a minimum episode length Eq = Q(T'~¢) such that ¢(|&,],T) < & for

any episode h whose length |E,| > Ey. Here G :=min, gep. .y r (@ ’W(d) - W(CT)‘ is the minimum

gap between any two non equal revenues corresponding to prices in D.

Note that the error function ¢(|&,],T") does not depend on the actual price D), set in episode h € [H].

The first adaptivity condition characterizes the buyer algorithm’s ability to adapt and optimally react

Dy,

to prices across different episodes. The term e

> iee, 2 —T(Dy)| is the seller’s average revenue

loss, relative to the revenue from optimal buyers, over a certain period under fixed price D;. However,

the term can alternatively be viewed as the buyer’s deviation from optimal behavior induced by the
m(

optimal threshold solution xp, because %’1) = Zne[ N9 T, 18 the optimal probability of which

the buyer should take price D;. The first adaptivity condition hence states that the buyer’s deviation

13 Note that 2; for any t € &, would also depend on the price Dy,.
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from optimality under a fixed price is bounded. The second stability condition states that for long
enough episodes, the deviation of buyer behavior from optimality stabilizes and reaches a certain
low point, namely 2%. Additionally, the stability condition states that a £-adaptive algorithm will
require an order of Q(T"~%) periods to stabilize. Thus, the larger £, the more stable the algorithm is.
Finally, we remark that if error function ¢ for some buyer algorithm is independent of 7', then the
stability condition would be easily satisfied.

The main result of this subsection is presented in Theorem [6 which characterizes the performance

of our pricing algorithm against any ¢-adaptive buyer algorithm. The proof of Theorem [6] can be

found in Appendix

Theorem 6 (Pricing against {-adaptive buyer strategies) Assume the buyer runs some &-
adaptive algorithm with error function ¢. Fiz € € (0,€) and let T. > 0 satisfy ¢(TT =5+, T) < 2%
for all' T >T,. E| Then, if the seller adopts the pricing strategy in Algorithm @ with episode length
E =T over a time horizon T > max {T67 (4d |log,(M)] + 4d == }, under Assumption |1| the

seller’s regret is bounded as
Reg,u < 2d ([logy(M)] +1) - T4 4-2dT - ¢ (§,T) +d (|logo(M) | +1)° /2. (17)

Theorem [0] delineates how a &-adaptive algorithm’s adaptivity and stability properties factor into
seller regret (see discussion after Definition [4] for details on adaptivity and stability). The first
term T17¢¢ in the seller’s regret corresponds to the buyer algorithm’s stability property, which
characterize its length of periods needed to stabilize in each episode; the second term ¢ (%,T )
corresponds to the adaptivity property, which represents the buyer’s deviation from the optimal
threshold-based strategy characterized by the optimal solution x, to U(d) for any price d € D.
Finally, we remark that the seller does not need to know the exact value of £, as some lower bound &
would be sufficient.

14T exists because the minimum episode length from the stability condition can be taken as Eg = T4 for large

enough 7" so that ¢(T175+57T) < 2%. Here, we also used the fact that ¢ is decreasing in its first argument.
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We note that &-adaptivity is not at all restrictive. We will show that our CTBR 4 coupled with

the simple SGD learning algorithm and constant step sizes is %—adaptive.

Theorem 7 (CTBR with constant step size SGD is ;-adaptive) There exists some Ty € N
such that for all T >T,, CTBR equipped with SGD with constant step size = T-3 is %—adaptz’ve.

The corresponding minimum episode length can be taken as Ey = Ti+e for some e = ©(1/1og(T))

and € <1/3.

The proof for Theorem [7] is provided in Appendix [F.3] We remark that although SGD with
constant step size is adaptive, SGD with vanishing step size is not adaptive. To see this intuitively,
consider the entire horizon T" being split equally into two halves. Suppose that the difference between
the prices in the two halves is large. From Theorem [0] we know that SGD with vanishing step size
adjusts to the fixed price quickly at a % rate in the first half. But when the algorithm enters the
second half, all step sizes are less than %, which does not provide enough flexibility for the algorithm

to adapt to the new price.

Corollary 1 (Seller’s regret against CTBR 4 with constant step size SGD) Let T > T
where Ty is defined in Theorem[7. Assume the buyer runs CTBR 4 with SGD and constant step size
n=T-%. Then for a fived e € (0, 1) and e =0O(1/10g(T)), if the seller sets prices with episode length

1
E =T3% using Algorithm%r then for all T > max {TO, (4d |log, (M) ] + 4d) 3 }, the seller’s regret

1s bounded as

Reg,, < 2dH - T3+ +4d\/Tlog (2T%)+ L +C <21+ E) T3 +dH?/2=0O(T3t),

where H = |logy(M)| 4+ 1, C and S are defined as in TheoremH A= \/2—|—16\/10g (T?log (1)),

B=2\/(1+72log (T?log (T))), and T:min{t e [T] :21(1 - 2T*%)t +BT 5 < S} —0O(T3).

The proof for Corollary [I] can be found in Appendix [F-4]
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Appendix. Appendices for Bidding and Pricing in Budget and ROI Constrained

Markets

Appendices are organized as followed. In Appendix [A] we present an extended literature review and discuss
some broader related works. In Appendices [Bl and |[C| we include additional material /results/discussions to
Sections [f] and [5.1} respectively. All proofs of our theoretical results are included in Appendices [D] [E] and [F]
Specifically, in Appendix [D] we provide proofs for our theoretical results in Section [} while in appendices [E]
and [F] we present the proofs for our results in Sections [5] and [6] respectively.

A. Extended Literature Review

As the most closely related works have been discussed in the introduction section, here we only further discuss
broader related works.

Other related work in online resource allocation There has been extensive research on online resource
allocation with budget/capacity constraints (see e.g. Kleinberg (2005)), Devanur and Hayes| (2009), |/Agrawal
et al| (2016)) and here we briefly discuss those that are the most relevant[”|[Zhou et al| (2008) studies the
budget-constrained bidding problem for sponsored search in an adversarial setting and present an algorithm
with competitive ratio that depends on upper and lower bounds on the value-to-cost ratios; [Babaioff et al.
(2007), |Arlotto and Gurvich| (2019)) study variants of the knapsack and secretary problems under the random
order arrival model and stochastic arrival model, respectively, both presenting near optimal algorithms in their
respective settings. Our work differs from this line of research as we incorporate an ROI constraint while also
considering the problem of how to price against budget and ROI constrained buyers. Finally, |[Agrawal et al.
(2014) utilizes a primal-dual framework to study online linear programming (LP) with packing constraints,
where the positive-valued constraint matrix is revealed column by column (each column corresponds to a

highest competing bid d;) along with the corresponding objective coefficient (corresponding to utility v, — ad,).

5 The buyer’s online bidding problem can be viewed as an online resource allocation problem. However, a key difference
is that in bidding, the buyer does not observe the highest competing bid d; (equivalently the amount of resource
depleted) before making a decision; as in the resource allocation problem, both the reward and resource depletion
are revealed before decision making. Therefore, to apply a resource allocation algorithm in the bidding problem, one
must additionally impose some bidding mechanic that indirectly achieves the desired allocation through constructing

appropriate bid values.
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Their algorithm determines the decision variable corresponding to the arriving column based on the dual
variables of past revealed columns.

Mechanism design and market equilibrium for budget and ROI constrained buyers One relevant line
of research addresses the mechanism design problem for budget or ROI constrained buyers. As one of the
pioneering works regarding mechanism for financially constrained buyers, Laffont and Robert| (1996) derives
the optimal mechanism for symmetric buyers and public budget information. On the contrary, a more recent
paper [Pai and Vohra| (2014) studies the general multidimensional mechanism design setting against buyers
with private budgets. Regarding ROI constrained buyers, |Golrezaei et al.| (2018)) shows that the optimal
mechanism for symmetric ROI-constrained buyers is either second-price auctions with reduced reserve prices
or subsidized second-price auctions. The work also derives an optimal mechanism for asymmetric ROI buyers.
There is also a wide range of work that study dynamic mechanism design for budget constrained buyers, and
we refer the reader to the survey [Bergemann and Said| (2010)) and references therein.

Online bidding in repeated auctions under feedback constraints Other than budget capacities and ROI
targets, buyers are also typically constrained in terms of the amount information available as they participate
in auctions. For example, Balseiro et al.| (2019a) studies bidding problem in first price auctions under different
feedback structures where an unconstrained quasi-linear buyer only observes whether or not she wins the
auction, and [Han et al.| (2020bja)) study a similar problem where the buyer also gets to observe the highest
competing bid if she did not win the auction. As another related work, Weed et al.| (2016) studies the bidding
problem where the buyer does not know her valuation before submitting her bid, and only observes her
valuation if she wins the auction. The work considers the stochastic and adversarial highest competing bid
settings, and presents algorithms that build on the UCB and EXP3 algorithms, respectively.

Selling to truthful and strategic buyers [Kleinberg and Leighton| (2003)) studies the scenario where the
seller sell items through a repeated posted price mechanism to a single truthful buyer who simply accepts
the price if her valuation is greater than the offered price. the work presents optimal algorithms in the
settings where the buyer’s valuations are fixed, stochastic and adversarial, respectively. |Amin et al.[ (2013 also
concerns selling through a posted price mechanism, but to a strategic buyer who may choose not to accept a
price bellow her valuation (or accept a price above her valuation). The work presents learning algorithms in
both the fixed valuation and stochastic valuation settings under the assumption that discount their utilities

over time. Other related works include |Golrezaei et al.| (2020) which studies the dynamic pricing problem
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for repeated contextual second price auctions facing multiple strategic buyers. The work proposes learning
algorithms that are robust to buyers’ strategic behavior under various seller information structures and
provides corresponding performance guarantees. |Golrezaei et al.| (2019)) relaxes several assumptions for one of
the settings in |Golrezaei et al.| (2020), and presents an algorithm with improved performance guarantees.
Finally, Balseiro et al.| (2019¢|) considers the dynamic mechanism design problem against strategic buyers,
and further identifies a class of problems in which the optimal mechanism is to simply repeat some static
mechanism over time.

Online optimization with covering constraints The buyer’s ROI constraint takes the form of a long-term
covering constraint. The related problem of optimization under online covering constraints have been studied
in |Alon et al.| (2003), |Azar et al.| (2013, 2014)). However, the setting in these works differ from ours: Instead
of making irrevocable online decisions, these works focus on updating a decision vector upon the arrival of
a covering constraint each period such that this constraint is satisfied. In other words, they consider the
decision problem where covering constraints are satisfied in each period, while our buyers of interest only
need to satisfy the covering (ROI) constraint in the long run. Another key difference is that in these works
the covering constraints are all positive, which means these constraints can be easily satisfied (per period) by
increasing each entry of the decision vector. On the contrary, in our problem the ROI balance per period
(v, — vd;)z; may be negative, and hence makes constraint satisfaction more difficult.

B. Additional Material for Section [5| Online Threshold Bidding Algorithm
The following Theorem [§ is a more detailed version of Theorem [3] in Section [5] which provides a general

regret upper bound for our CTBR framework w.r.t. any input learning algorithm A.

Theorem 8 (Regret of CTBR) Let {p:}, .y be the estimates of learning algorithm A. Assume there

exists estimation error function £, : (0,1) — RT decreasing in t so that P(||p—p:|| <€) > 1 — and

1
T2

lim,_, o 4 < S, where E

S = 1min{Pb+1 prtl Tkt P e PP Eieppyptdtop PZkE[b]pkdk}
T 9 ) )

) VK®© ) (\/?+1)m ) VKd ’ (\/?Jrl)fi

16 The definition r = max {k €[K]: Zle[k] P (ve —’ydl) > 0} implies p" "1 > 0 and Zke[ pFw” < 0 always hold. In

r+1]

the edge case where r = K, we defined d**! = 00, so w®+! = —co. Similarly, the definition of b always implies p® >0

and Zke[b+1] prd* > p.
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Define Ta=min{t € [T]:¢; < S} to be the earliest period t under which the ¢, falls bellow S. Then for large

enough T such that

T>max{2TA M} and YL 0> 2(Ta+ 1), (18)

P ke PRwk

bidding according to CTBR 4 with confidence bound ¢, satisfies both ROI and budget constraints in
Equation . Furthermore, Reg(p,T,a,v,p) < maxe(x) [v* — ad”| - (27:4+1+C’Zt€m Et), where C =

max{i,g} (3\/?4—5).

The proof for Theorem [§] can be found in Appendix Here, we provide some intuition for the conditions
and results of Theorem |8} The variable T4 can be viewed as the number of periods required for the input
algorithm A to produce sufficiently accurate estimates. Hence, the first condition in Equation , namely
T > max {27',47 %} simply states the horizon length should be large enough for the algorithm to
stabilize. We also note that 74 is possibly a function of 7', so as long as it is sublinear in 7', the first condition
is automatically fulfilled for large enough 7. Regarding the second condition in Equation , the term
ZtT:TA 41 04 1s required to be large. This is because ¢; represents how conservative the buyer is in terms of
her estimations for the remainder probabilities ¢}, and ¢}, (see Equation ): the larger ¢;, the more
conservative the buyer is, and hence the more likely the buyer can satisfy both budget and ROI constraints.
On the contrary, the term ZZ;TA 41 4+ also appears in the regret, which highlights a very natural trade-off
between constraint satisfaction and overall utility loss.

The following Theorem [J] is a more detailed version of Theorem [4]in Section [5} which characterizes regret

upper bounds for our CTBR framework when the input learning algorithm A is EE, SGD with vanishing

step size, and SGD with constant step size, respectively.

Theorem 9 (CTBR , with EE and SGD) Recall the EE and SGD algorithms described in Equation
, and let {ﬁt}te[T] be the corresponding estimates for p. Then the following hold:
1. When A is EE, the corresponding error function in TheoremH is by = \/M. Then, there exists

some Ty < oo such that for all T > Ty, the regret of CTBR 4 is

Reg(p,T, a7, p) < max [v* — ad"| - (27:4 +1+ C\/QKTlog(T)) ) (19)

ke[K]

where T4 and C' are defined in Theorem @ Here Ty =0O(log(T)), so Reg(p,T, a7, p) = O(VT).
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2. When A is SGD with vanishing step size 1, =+, then {, = \/BOOIOg(Tlfg(T))HQ. Then, there exists some

Ty < oo such that for all T >T}, the regret of CTBR 4 is

Reg(p,T,a,v,p) < max 0% — ad"|- (QTA +1+42CVT+/6001og (T'log (T)) + 12) , (20)
(S

Here Ty = ©(log(T)), so Reg(p,T,c,7,p) = O(VT).

3. If SGD is run with constant step size n, =n € (0,1), the corresponding error function in Theorem@ 18

t—1

ly=A(1-2n)"> + B/, where

A= \/2 +161/log (Tlog (T)), B=2+/(1+72log(Tlog(T))). (21)
Then, by taking n= T’%, there exists some To < oo such that for all T > Ty, the regret of CTBR 4 is

Reg(p,T, a7, p) < max [v* — ad”| - (27?4 + 1+C(A/2+B)T%) . (22)

ke[K]

Here Ty =0©(T'3), so Reg(p,T,c,y,p) = O(T'%).

Finally, in each of the above scenarios, CTBR 4 satisfies both budget and ROI constraints in Equation .

Here, the high probability bounds for the event ||p — p,|| < ¢; when A is EE directly follows from Proposition 1
of |Qian et al.[ (2020) which is a restatement of the concentration inequalities for multinomial random variables
developed in (Weissman et al. (2003)@ Hence the proof for the case where A is EE directly follows from
Theorem [8 and hence will be omitted. The high probability bound for SGD with vanishing step sizes follows
exactly from Proposition 1 in |[Rakhlin et al.| (2011)), but for completeness we include it in our Appendix
The high probability bound for constant step size is based on a modification of that proof, and also provided
in the same appendix.

C. Additional Material for Section [5.1I] Empirical Study on Learning How to Bid

CTBP implementation robust to ¢;. In the following Figure [d] we illustrate the rate of convergence of

CTBRgg, with confidence bound ¢, = m for s € {%, %, %, 1}.

17 The high probability bounds in [Qian et al.| (2020) or [Weissman et al.|(2003) are w.r.t. the ¢; norm. That is, the
resuls therein imply that for A= EE, P(||p — p¢|[1 <{:) >1— L. Nevertheless, since ||p — p¢|[1 > ||p — pt||, we have

P(lp—pell <€) 2P (|lp—pelh <€) 21— 7.
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Figure 4
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Convergence of CTBRge. Recalling &, defined in Algorithm to be the estimate of the optimal threshold-
based solution =* w.r.t. a set of model primitives (,~, p¥, P¥"*), this figure shows the estimation error

for sc {%,2,2 1}. The shaded

||&¢ — || over time for CTBRee with confidence bound ¢; = 5130 1

s
max{d,o}vVK
area delineates the standard deviation of the estimation error over N = 100 probability instances. We omit

the a-dominant regime as all CTBRge converge to x* very quickly and all lines nearly overlap. This figure

suggests that larger s yields faster convergence of CTBRge to the optimal threshold-based solution.

Comparison with benchmark bidding algorithms. Here, we present the pseudocode for our considered

benchmark bidding algorithms Conserv, Budget-Pacing, ROI-Pacing and Pacing, respectively. First, recall

\: and [1; are estimates of the optimal dual variables w.r.t. the budget constraint and ROI constraint,

respectively, in the buyer’s hindsight optimization problem OPT({(v¢,d:)}, (1157, p) defined in Equation

. Also recall p > 0 is the budget rate, v > 0 is the buyer’s target ROI, « € (0,7) is the buyer’s private

capital cost, and z, € {0,1} is the indicator variable that denotes whether the buyer won the item in period ¢.

The benchmark bidding algorithms proceed as followed:

e Conserv: for t € [T], observe v, and bid b, = v, /7.

e Budget-Pacing: for ¢ € [T], observe v, and bid b, = —%—. Then observe payment d,z; and update

oty
A1 =1 5 (5\z 1 (p— dtzz)) : (23)
e ROI-Pacing: For t € [T], observe v, and bid b, = % Then, observe payment d,z, and auction
outcome z;. Update
frer = o gy (fbe — e (veze — ydi24)) - (24)
e Pacing: Observe v, and bid b, = % Then, observe payment d,z, and auction outcome z,. Update

;\t+1 and fi,41 according to Equations and , respectively.
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In the above algorithms, Il is the projection onto a set C, and fi, A are upper bounds for the corresponding
optimal dual variables. Note that subgradient descent step-sizes 7, are typically chosen to be in the order of

O(1/V/T) to yield optimal bidding performance (see Balseiro et al.| (2021)).
D. Proofs for Section [4]

Definition 5 Recall in Deﬁnition we defined 1 (J,q) to be a K-dimensional threshold vector. For any
other dimension K' # K, we will add a subscript and use 1y to denote threshold vectors in R .
D.1. Proof of Proposition

We rewrite OPT ({v,d,}, e %Y p) defined in Equation by grouping all periods ¢ during which a type k

arrival occurs:

OPT({Uhdt}te[T] 0L, p) = max.eo,1]7 Zke[x] (v* — ad®) (Zt:(vt,dt):(uk,dk) zt)
St e (0 =90 (o oian ) =0
Eke[K] d* (Zt:(vt,dt)z(uk,dk’) zt) <pT
Since 37,y a,)=(ok.ax) 2t € [0, N*], applying the change of variables }-,. . ;) _( gy 2 = N*2"* for all k € [K]
with some decision variable z* € [0,1] yields the desired result. |
D.2. Proof for Theorem [

Our proof relies on the following lemma, whose proof can be found in Appendix
Lemma 1 Consider {(a’,b")}icim) where (a’,b") € Ry xRy for all i € [m]. Assume ‘;—11 > ‘Z—j o> 20 and
denote b1 =co. Then, for some ¢ >0, (i) the unique optimal solution to

Knapsack= max Z a'yt st Z by <e,

velom i€[m] i€[m]

is the m-dimensional threshold vectoﬁ Y =vn(J,q) €[0,1]™ where J =max{i € [m]:3° .,V <c}, and

=3 v
bJJGr[lJ] J S m — 1
q= . (i) for any e >0, the following optimization problem
0 J=m
Negval-Knapsack= max a'—eb')y' st biy' <c
g p 58 2 ]( )y .;] y' <c,

18 Here, we recall ¥, denotes m-dimensional threshold vectors for any m € N, and for simplicity we omit the subscript

if we are working with K-dimensional threshold vectors
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admits a unique optimal solution which is the threshold vector min {y*,v(k.,0)}, where k, = max{i € [m]:

a’>eb'}.

We now return to our proof for Theorem [1| which consists of 3 steps:

1. We show that X®:=min{® ¢(k.,0)} is the unique optimal solution to the “budget only” problem:

P-Budget = F(0F —ad) 2" st FdFak < 25
udge zg&ﬁ(}{ Zn (v* —ad*) 2" s Zn z* <ec, (25)
ke[K] ke[K]

where we recall ® = (b, ¢?) € [0,1]¥ is the threshold vector defined in the statement of the lemma.

2. We show that X*® := min{a",1(k,,0)} is the unique optimal solution the “ROI constraint only” problem:

P-ROI = wéﬂfﬁx Z n* (v* — ad®) 2 s.t. Z n* (v* —~d*) 2* >0, (26)
ke[K] ke[K]

where we recall * = (b,q") € [0,1]¥ is the threshold vector defined in the statement of the lemma.

3. We show that z* = min{ X®, X*} = min{x®, ", ¢)(k,,0)} is feasible to U(n;a,,c). In other words, we
show x* is feasible to both P-Budget and P-ROI. The rest of the proof is almost trivial: P-Budget,
P-ROI and U(n;a,~,c) have the same objective functions, while each of P-Budget and P-ROI has one
less constraint than U(n;a,~,¢), respectively. So P-Budget > U(n;«a,~,c) and P-ROI > U(n;a,v,c). If
x* = X® and a* is feasible to U(n;«,,c), then P-Budget = U(n;«,7,c) and X? is the unique optimal
solution to both P-Budget and U(n;q,v,c). A similar argument holds for the case when x* = X*.

B
Proof for (1) Since ( ) _ 0% — o and 6% > --- > 0%, applying Lemma (i) with m= K, a* =n*v*,

o
b* =nkd*, c=c and e = « allows us to directly conclude that min{x?,(x,,0)} is the unique optimal solution
to P-Budget.

Proof for (2) Let @ € [0,1]¥ be any optimal solution to P-ROI. Recall £, = max{k € [K]:v* > ~vd*} so
that v* > ~d* for all k <k, [””| Then it is easy to see for any k € [k,], ¥ = 1. This is because if there exists
some j < £, such that 27 < 1, then the solution & = (z'...2771, 1,277 ... ZX) is feasible and yields a strictly
larger objective than :

Z n* (v* — ad) 2* — Z n* (v* —ad®) 7" = (v —ad’) (1-27) > 0. (27)

ke[K] ke(K]

1 2 K
Y Recall ko =max{k € [K]:v* > ad"}, so Ky < ka because a < and 4 > %3 >t
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Note that the final inequality cannot be equal because we assumed 77 < 1 and v* # ad” for all k € [K]. Hence,

the optimal solution to P-ROI takes the form of & = (1...1, 5% "1 ... %) € [0,1]¥. Hence, we know that

K~y 1's
y:= (¥",...y") must satisfy
K K
Yy € arg max Z n* (v* — ad®) 2* s.t. Z n* (yd" —o*) 2t <, (28)
ee(0,1]F 7y _
=kry+1 k=r~+1

where we defined ¢=3-, . ,n*(v" —~d*) > 0. Note that we have yd* —v* >0 for all k=r, +1... K. By

simple calculations it is easy to see that for any i,j € {s,+1... K}, we have

vi wd (1—;)711) (1—%) niv’
7>7

&7 D W —v) i (yd =)

Hence % decreases in k for k€ {k, +1... K}. Therefore, in the context of Lemma (ii), if we let
with a’ = (1 - %) n'v', b =n'(yd' —v'), and e = £, we have a' —eb’ =n' (v’ — ad’). So further setting c=¢c

in Lemma [1] (ii), we get

y=min{ (1 1,G",0...,0), ¢k (Ko — Ky, 0) p €[0,1]57",

1 =1
Ry tl

entries y

where

r=max{ ke{x,+1...K}: Z f(yd'=v') <€ © hax ke|[K]: Zni(vi—'ydi)zo =r

i=kry+1 i€[k]
G D hen, 1 (ydt = 0F) () 2okelf] (v* —~vd*) n* .
(Y& — o) it (ydit — gyt L

Here, in (i) and (i) we used the definition of =3, . n* (v* —~d") >0 and rearranged terms. Combining
the fact that the optimal solution to P-ROI is & = (L/}, gt g%) €]0,1])%, and g is uniquely determined
by Equation , we can conclude that = min {¢z;7 1q;), ¥(Ka,0)} = min {x*, 1 (K4, 0)} is the unique optimal
solution to P-ROI.

Proof for (3) We use the following lemma whose proof can be found in Appendix

Lemma 2 (Ordering property for threshold vectors) Consider {a'}icim) € Ry and {b'}icim € R
where there exists some j € [m] such that b* >0 for all i=1...5 and o' <0 for alli=7+1,...m. Let
Z,Y €[0,1]™ be two threshold vectors such that Y =, (Jy,qv), Z = ¥m(Jz,q2), and Z =Y . Then the
following hold:

() Pietm @27 2 i @Y

(i) If 32 b'Z" >0 then 37, 1, 0'Y" > 0. Furthermore, if b™*1 <0, then 3 VY > b2 > 0.

i€[m]
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(i) If i OV <0 then Y, b2 <0.

Since n*d* > 0 for all k € [K]| and * = min{X®, X*} < X® we can apply Lemma [2| (i) with m = K,
a* =n*d*, Z = X® and Y = z*, which yields > kelK] nkdfx** < > kelx] nkdk X®* < ¢, where the last inequality
is due to the fact that XP® is feasible to P-Budget. This implies «* is also feasible to P-Budget.

On the other hand, * = min{ X®, X*} < X*. Since n* (v* —vd*) >0 for k=1...x, and n* (v* —vd*) <0
for k=r,+1... K, we apply Lemma 2] (ii) with m = K, b* = n* (v* —d*), Z = X* and Y = x*, which shows

Z n* (v’“ —’ydk) XMk (é) Og Z n* (v'“ —*ydk) x>0,

ke[K] ke(K]

where (i) follows from the fact that X*® is feasible to P-ROI and (ii) follows from Lemma 2] (ii). Hence @* is

also feasible to P-ROI. [ |

D.3. Proof of Theorem [2]

Let (J,q) be defined as Theorem [I| w.r.t. n=p and ¢ = p. If for each period ¢ € [T] the buyer submits the
threshold bid b, = B(v;, J, q), then

E[ " (v —ad)1{b > di} | =TU(D;0,7,0) 2 B [OPT({vr,di}beiry 30,7, 0)

te[T]

Let x* be the optimal solution to U(p;«,7, p). According to Theorem |1| x* is the threshold vector ¢ (J,q)
where J € [K] and ¢ € [0,1) are the optimal threshold type and remained probability as defined in Theorem
To show the proposed bidding strategy is B-feasible and achieves a utility equal to TU (p; «, 7, p), we show
the following;:

1. Budget constraint satisfied: 3°,,  E[d,1{b, > d;}] =T3", , p*d*z** < pT.
2. ROI constraint satisfied: >, . E[wI{b, > d:}]=T3%", ;w*d*z*"* >0.

3. Optimal utility: 3°, , E[(v: — ad)) I{b; > d:}| =T 3=, (1 (v* —ad®) 2*F =TU(p; .7, p).

To prove (1), consider the following

E[dI{b > d}] = (1 - [dI{ 2% = d,}] +4E [dI{ 75 > d.}]

07
(i) .
_ (1_q) Z dkpk]l{ek ZQJ}—FQ Z dkpkﬂ{ak 20J+1} — Z dkpk+qu+1pJ+1 2 Z dkpkx ,k7
kE[K] ke[K] ke[J] ke[K]

where in the last equality we used the fact that «* = (J, ¢). Multiplying both sides by T' concludes (1). The

proofs for (2) and (3) are identical to that of (1) simply by replacing d; with w; and v, — ad; respectively.
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To show TU(p;«,~,p) > E [OPT({vt,dt}te[T] ;a,%p)}, we first dualize OPT({Utudt}te[T] ;a,7,p). Let
1, A >0 be the dual variables associated with the ROI and budget constraint, respectively. We then have
E [OPT({% de}epr) i 675 p)} < B max (L+pve) = (a+yp+A)di) 2z | +ApT
T e (29)

ZE (14 pve) = (a+yp+A) de) | + AT = TZp (14 ") = (a+yp+X)d*)  + AT

te[T) ke[K]

Similarly, if we dualize U(p; a7, p), again with dual variables p, A >0 that corresponds to the ROI and

budget constraint, respectively:

—~
INS
=

max, (14 po") = (a+yp+ ) d*) pha® + Ap
xe|0,
ke[K]

= Z " ((1+/wk)f(oz+'y,u+/\)dk)++)\p.

kE[K]

U(p; .7, p)

Note that if we define i, A = argmin,, >0 > okeix) (L4 pv*) = (a+yp+A)d*), + Ap, then by strong duality

(i) becomes an equality w.r.t. ,E,X, and hence

Up;a,v,p) = Zp (1+,uv (a+7ﬁ+x>dk>++Xp.

ke[K]

Since Equation holds for all p, A >0, we can conclude

E[OPT({v, di}ieryionyon)] < T3 ot (14" (a+vﬁ+X)dk)++XpT = TU(p;,7,p) -

ke[K]

D.4. Additional Proofs for Appendix

D.4.1. Proof for Lemma The problem in (i) is exactly the well-studied 0-1 knapsack problem with
arbitrary item sizes (see e.g. Dantzig (1957))), and we will omit the proof here. For (ii), let g be any optimal
solution to Negval-Knapsack. We claim that for any i > ., y° = 0. This is easy to see because if there exists
some j > £, s.t. 7 > 0, then the solution y = (g*...75°~1,0,7°71,...g™) is feasible to Negval-Knapsack, and
also yields a strictly larger objective than that of y since

> (0 —eb) 7 - Y (@ - eb)y = (@@ ) <0,

i€[m] i€[m]

where we used the fact that a/ < eb’ by the definition of k.. Hence, the optimal solution to problem

to Negval-Knapsacktakes the form of y = (g',4%...9",0,...0) € [0,1]™. Furthermore, we observe that

Y. = (¥*,y?%...y") must be the optimal solution to

yer[%i)](we Z (a'—eb')y' st Z byt <c.

i€[re] i€[ke]
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Now, since a* —eb* > 0 for all i € [r,], and “l%bl > > 22t (due to the fact that “i;fbi = ‘;—Z —e and the

decreasing ordering of ‘Z—f’s in 7), we can apply (i) and conclude that y, is uniquely determined by the threshold
C—Zi . b?
_ —E = Jo<k.—1
b <c} and ¢, = . Note
0 Jo = ke

that J > J. always holds, and recall y* =1,,(J,¢) . It remains to consider two scenarios

vector ¥, (Je,q.) € R, where J, = max{i € [k]: Y

J€ld]

o If J, =k, then J > J, = k., s0 y* = 9,,(ke,0) € R™, and hence min{y*, ¥ (k,0)} = 1,,(k.,0). On the

other hand, g = (g*,7%...9%,0,...0) = (1...1,0,...0) = (k.,0), so g = min{y*, ¥, (k.,0)}.
Je 1’s

o If J, <&k, —1, then J, =J and ¢. = ¢. So min{y*,¢,,(k.,0)} = y*. On the other hand, y =

(@, 9%...9%,0,...0)0=(1...1,4.,0,...0), so y =y* = min{y*, ¥, (k.,0)}.
Je 1’s

D.4.2. Proof for Lemma 2]

(i) Since a’ >0 for all i € [m], and Z =Y (i.e. Z' > Y for all i € [m]), it is easy to see 3, ja'Z’ >
Zzé[m] a'ZYZ

(ii) Note that Y/¥+1 =gy while Y =0 for all i > Jy + 1. We prove the claim by contradiction. Assume
Zie[m] b'Y'" < 0, then it is easy to see b’/ 1 < 0. This is because if b’ 1 >0, then b* >0 foralli=1...Jy +1
by the definition of {b'}ic(n), and hence 37, 0'Y" =37, ., b'Y" >0 contradicting our assumption.

Next, since 37, b'Y* <0<37, b'Z%, we have 37, 1 b*(Z" —Y") > 0. On the other hand,

i€[m

i 7 iy () g m i 7 iy (9
Zie[m]b(Z -YH=>3 b(Z'-Y") < 0.

i=Jy+1
Here, (i) follows from the definition of a threshold vector so that Y =1 for all i=1...Jy and also Z*=1 for
alli=1...Jy due to Z =Y. (ii) follows from the fact that b/ ' <0 so b* <0 for all i > Jy + 1 due to the
definition of {b};c[m). Hence, we arrive at a contradiction, which allows us to conclude the first half of the
claim, i.e. 3, 1 0°Z* >0 implies 37, b'Y" > 0.

We now show the second half of the claim i.e. b’ 1 < 0 implies Zie[m] by’ > Zie[m] biZP>0. If b+ <0,

then ' <0 for all i =Jy +1+...Jz + 1, and hence

Y V(20 =Y ) =0 (2 Yy ) 4 3 b 2 <0,
Jz+1

2 b'Z" does not exist if Jy = J,, and in (i) we also

Note that in the above inequality the summand >
used the fact that Y =0 for all 7 > .Jy + 1 using the definition of a threshold veector.

(iii) We again use a contradiction argument by assuming > ]biZi >0, and the rest of the proof is

i€[m

almost identical to that of (ii) so we will omit it here. [ ]
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E. Proofs for Section [B
E.1. Proof for Theorem

Define the event G, = {||p; — p|| < ¢}, and recall that P(G,) >1— &, w* =v* —yd*, © = max,¢ [k [vF —vd*],

and d = max,e (k) d*. As in the proof of Theorem [2| we recognize that for any ¢ € [T,

] Z wFpFil  and E [dtﬂ{bt >d.} &, Z dpFal

ke[K] ke[K]

E (wI{b, >d,}

where &, = w(jt_H, Gi+1) as defined in Equation in Algorithm |1} and b, is the threshold bid 8(v,, jt, Gr)-

Hence, to show that Algorithm [1] satisfies both ROI and budget constraint in Equation , it suffices to show

Z Z w'“p'“ac’C 20, and Z Z <pT

te[T] ke[K] te[T] ke[K]

Our results rely on the following lemma which mainly states that when the estimate p, for p is accurate

for large t, then the corresponding estimates Et, 7+,qr, g; are all accurate. See proof in Appendix

Lemma 3 Assume event G, = {||p, — p|| < {.} holds for t > T, =min{t € [T]: ¢, < S}, where S is defined in
the statement of Theorem[8 Then, the following conditions hold
Condition (i): b, =b and hence J,=.J.  Condition (ii): G*, ¢° > 0.
Condition (111): w - £, < ZkE[K] FhFpkwh < (3\/?4—5) wl, and d -0, < p — Zke[K] EPFpkdk <
(3VEK +5) dt..
Condition (iv): |(¢" —q;)p"™ < 2 (3\/>—|— 5) 0, and |(¢® — @) p*TH < g<3\/?+5> l,.

The remaining proof consists of 3 parts: (1) proving ROI constraint is satisfied; (2) proving budget constraint

is satisfied; (3) upper bounding regret.
(1) Proving ROI constraint is satisfied. i.e., E [Ztem > kelk ifpkwk} > (. We lower bound the

realized ROI balance as followed:

E|Y Y @it = —aTa+ Y D (B[ ' I{G}] +E [#p" v I{G/}]) (30)

te[T] ke[K] t>T A ke[K)

> —aTut+ Y B | S #ptet )| —o S Pe) Y —aTat S E| Y it G} | —w

t>T 4 ke[K] t>T 4 t>T 4 kE[K]
(i1) —'lZ)’];\ + Zt>TA (ZkE[J] pkwk) P (gt) - 'U_), if ’ZUJ+1 >0

_w7j4+w2t>7’,4 Et]P(gt) —w, if w/Tt <0
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J+1 >0, we know

where (i) follows from P (G¢) =P (||p, — p|| > ¢;) < F; For (ii) we have two scenarios: when w
that w* >0 for all k < J 41, so Zke xfpkwk—zke pFwk 4+ g,p’ T J“>Zk p w”* where we used the
definition of the threshold vector &, = ’(/J(jt, G;) and Jt = J under event G, for ¢t > T4 according to Lemma
(i). For the scenario when w’*! <0, we have Reg(p, T, «,7, p) < maxye(x) [v* — ad®|- (27;\ +1+C3 e Et)7
where for (iii) we applied the ordering property for threshold vectors in Lemma [2| (ii) where we take Y = &,
Z = & using the fact that 1(J,, ) = &, = min {Z*, &%, ¢ (ka,0)} < 2% = (JF, ¢) and w’ ! =w’/+! <0, and
for (iv) we directly applied Lemma [3] (iii) as we assumed ¢ > 7, and the event G, holds.

It remains to further lower bound Equation under the two scenarios w’*1 >0 and w’/*! < 0. When

w’T1 >0, we have

Z Zi‘fpkwk > —wTA+Z pr P(G,) —w

te[T) ke[K] t>Ta \ke[J]

~ 1 _ T _
> —UJTA-F(l—T) T —Tx) kezmpw —w = 71 kezmpkwk —w(Ta+1) > 0,

where in (i) we used the condition & < % and T > 27,. Furthermore, (ii) follows from our assumption that

T> %. When w’/*! <0, we have
kelJ

Z szpkwk = 7wTA+wZ€tP(Qt)*w > @TAJr(l) th
te[T] ke[K] t>Ta ST
() (i4)
> 5 > L-w(Tatl) 20,
t>T 7

where in (i) we used the condition % < 1. Moreover, (i) follows from the condition ) o7 be >2(Ta+1).
Proving budget constraint is satisfied. i.e., E [Ztem > ke TP | < pT'. Using the ordering prop-
erty for threshold vectors in Lemma [2| (i), since p*d* >0 for all k and &, = min {£2, &% v (x,,0)} X &5, we

have 3, 2p"d* <37, 1 @ @y *ptd® for all t € [T].Hence,

Zzi k gk <E ZZAkakdk

te[T] ke[K te[T] ke[K]
< ATk SOE| Y @G|+ 3B | Y st
t>T A ke[K] t>T A ke[K]

i

S ATt Y (p-d) P(G) +d(T~To)

—~
N2

t>T A
(44)
< dTa+ Y (p—dt,)+d < pT— d(ZZt ,41) < pT.
t>T A t>Ta

where (i) follows directly from Lemma [3| (iii) since ¢ > T4 and we assume event G, holds; (ii) follows from

Zt>TA Et > 2(TA+ 1)
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Bounding regret. As in the proof of Theorem it is easy to see for any ¢ € [T,

E (v, —ad) I{b; > d.} |&

t} = ek (V° —ad®) p*3;. Then, we can bound the regret as follows:

Reg(p. T, a7, p)

E {OPT({’Utvdt}te[T] ;a,’y,p)} - Z E Z (Uk — adk) H{bt 2 dt}
]

te(T] ke[K

—~
INS
&

T-U(p;a,vy,p) — ZIE Z v* —ad®) I{b, >d,}
te[T] ke[K]

(id)
< 2711;23?]]@ —ad’“l+t;; u(p;a,y,p) —E g{;ﬂ (v* — ad”) 1{b, > d,}

= 2TAI£I€1%:;(]|vk,adk|+ Z u(p;a,v,p)—E [E Z (U’C,ad’“)ﬂ{thdt} Z,
t>Ta | | #elx]

:2TA£%|vk—adk|+Z u(p;a,v,p) —E Z(vk—adk)ﬂ{btzdt} pFak

t>T A | FEIK]

(&) 2T 4 max ’v adk’ + Z E Z (vk — ozdk) (J;*k — i‘f)pk

t>T A ke[K]

QTAHI&X’U — ad®| 4 max [v* — ad”| ZE Z aF =2 pt . (31)

he(K] t>Ta ke[K]

Here, (i) follows from upper bounding OPT({vt,dt}tE[T] ;a,y, p) with T-U(p; 7, p) as shown in Lemma

(i) follows from U(p;a, 7y, p) < maxye[x) [v* — ad®| and ’Zkem (vF — adF)T{b, > d,}

< maxye(x) |07 — ad”|
for all t € [T; (iii) follows from the definition of * =1 (J, ¢) being the optimal solution of u (p;a,, p).

Now, considering E [ZkE[K] |[z*F — &F| p* } for all t > T4, we have

E Y |arF—af|p* CE >

ke[K] ke[K]

*,k

1 (i) .
+7 = Elle-alp™Ha] +

T

In (i) we used the fact that [2** —2F| <1 for all k € [K] since 2**, &} € [0,1] and P (Gf) < 7. In (ii), we first
evoked Theorem |1|such that &* = (J,q); then we used the definition &; = w(jt, d:) and according to Lemma

(i) we have J, = J under event G, for t > 7. Plugging this back into Equation (3 , we get

Reg(p, T, ., p) < max |v* — ad”| (27?4+1+ Y E [lq—dtlp“lﬂ{gt}]> :

kE[K]
[ t>T A

Therefore, it now remains to show that under event G, for t > T4, we have

\&\ ISH

) o
(G:—q)p’™| < maX{
w’

} (3\7 + 5) 0. (32)
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First, recall the definitions J = min{b,r, k. },
G, = @ min {2}/, 227 I{k, > J+1}}  and g=min {2, >/ [{k, > T +1}}.

The definition in (i) should be ¢; = min {xt it 2y et 1 {FL > Jt}} but again under event G, for t > T4,
Lemma [3] states that J, = J.

If J4+1> k4, then we know that §; = ¢ =0 so the inequality in Equation trivially holds. If J +1 < Kk,
then either J =r or J=b. Furthermore, ¢, = min {#}"’*",#7"*'} and ¢ = min {z®/*1,2%7+1}. Hence, in the
following we consider each of the four events:

° {xR ,J+1 < B J+1} N {QA:R ,J+1 <3 ~B, J+1}
° {xR,J-H > xB,J-H} N {L%R,J—}-l > Q?,J-&-l}

° {xR,J—H S xB,J—H} N {L%R,J—}-l > j?"]'ﬂ}

° {xR AL S B J+1} N {QA:R ,J+1 <z ~B, J+1}

We observe that if the event {z®/*! <g®/+1} 0 {38+ <P/} holds, then J =7, so p’*! =p™+!, as
well as ¢ =¢* and ¢, = 2} = G*. In this case Equation holds directly as a result of Lemma |3| (iv).
Similarly, if the event {z/*1® > z8/+1} N {387+ > 237+ 1 holds, then J =b, so p’*! = p**! as well as ¢ = ¢°
and §, = 25" = = ¢?, so Equation again holds directly as a result of Lemma |3 (iv).

Now, consider the scenario where the event {z®/*1 < 2®/+1}N{2%/+1 > }"*'} holds, which implies J =7

and J, = b, as well as ¢, =257 = &, and ¢ = 2®/! = ¢*. Since b, = b and #, = r under event G,, we know
that J =7 =b, which further implies p’*! = p**! = p"+!. Therefore,
A J+1 __ ABJ+1, J+1 (1) AR, J+1, J+1 __ ~R r+1( ) R 7‘+1 E @ \/>
gp’ T =2, p <z P =q;p < ¢"p"" +max 3VK +5)¢,
N~—— w d

=qp’+1
(i4) (iv) 0 )

gpr Tt =M T BT = Bt < @t JFmaX{w
—— w

=qp’t1 =Gp/+t

\Q‘\ ISH

}(3@%) 0

Here (i) and (ii) are valid because the event{z®’*! <a®7/+1} 0 {87+ > 23/+1} holds; both (iii) and (iv)

follow from Lemma (3| (iv). Hence combining the above inequalities we can conclude
0=l p' <max{ }(3\F+ 5) ‘. (34)

Following the same analysis, when the event {z%/*1 > 2741} 0 {38/+1 <337*!} holds, we can again show

J=r=>b,s0 p/tt =p**t1 =pt! and also §, =&}’ =G, and ¢ = 2>/t = ¢®. Using a similar argument as

in Equation , we can conclude |g — g,|p/ ! < max{%, g} <3\/?+5) L. [ |
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E.2. Proof for Theorem

For both SGD with vanishing and constant step sizes, we only need to show ||p* — p,|| < ¢, w.p. at least 1 — 1,
and check that there exists some T < co such that for all 7 > T, the following conditions hold

40 (Ta +1)
ZkE[J] prwk

where T4 =min{t € [T]:4; < S} for S defined in Theorem [8] Note that T4 can possibly depend on T since

T
and > 6>2(Ta+1),

t=Ta+1

T > max {2’7:4,

¢ may depend on T'. Then, we can further bound the regret by applying Theorem

In the following proof, recall

s, = (I{(vs,dy) = (v*,d") },... . I{(v,,d;) = (v*,d")}) .

Furthermore, let 7; be the sigma algebra generated by {(v.,d.)} (-

Proof for SGD with vanishing step size
Here, we utilize the following Lemma which is equivalent to Proposition 1 in [Rakhlin et al|(2011). The proof

is exactly the same as that in [Rakhlin et al.| (2011)), but for completeness we will include it in Appendix

Lemma 4 Assume (v;,d;) ~p* € Ay for all t € [T], and let {p.}, ;) e the estimates for p* generated

by SGD with vanishing step size 1, = % for all t. Then w.p. at least 1 — 0 for some ¢ € (0,1/e), we have
R 600 log( 1281 ) 412
[p* — b < %

Now, returning to the proof for SGD with vanishing step sizes, we can simply take § = % and set

l, = \/ w, which yields the desired high probability bound in the Theorem statement.

We now show that there exists some 77 < oo such that for all 7> T} the following conditions always hold.

4wm+1>}

T
and 0;>2(Ta+1),
TG D b>2(Ta+1)

t=To+1

T>max{27:4,

where T4 =min{t € [T]:¢, < S}. It is easy to see that T, = {\/GOOIOg(Tlgg(T))HQ—‘ — ©(log(T)). Therefore,
for any large enough 7', we must have T > max {2’7:4, %} =0(log(T)).

Next, we show that we can satisfy this condition ZtT:TA+1 £y >2(T4+1) for large enough T'. Recall that

- \/w and note that

Ty T T T+1
> > / —d7'> > dr—/
t=Ta+1 \/g t=Ta+171 t=Ta+171 Tatl \f (35)

=2 (VI+1-y/Ti+1) =e(/T).
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Therefore, for any large enough T, we must have EthTAH 0,>0(T)>2(Ta+1)=0(log(T)).
To bound the regret of the CTBR with SGD and vanishing step size n = %, by applying Theorem
we only need to bound Ztem l;. Using a similar integration argument as in Equation , we have

Z;‘F:TAH 5 < I 2: =2V/T. This allows us to bound the regret as followed:

—
S
g

R T < k_ k.2 1
eg(p,T.0,7,p) = max[o* —ad'| {2Ta+1+C ) 4
te[T]
< max |v" —ad"|- (2T + 1+ 20VT - \/60010g (Tlog (T) + 12)
(S
where (i) follows from Theorem -

Proof for SGD with constant step size
For the high probability bound for SGD with constant step sizes, we prove a slightly more general result, as

described in the following Lemma. The proof can be found in Appendix [E.3.3]

Lemma 5 Assume (v,,d,) ~p* €Ay for allt=s,s+1,... for some starting point s € [T, and let {ﬁt}te[T]
be the estimates for p* generated by SGD with constant step size n, =n € (0,1/4) for all t. Then for any

distribution p, at the starting point, w.p. at least 1 — 4§ for some § € (0,1/e), we have

a1 <216 o (2 ) (13 +2\/(1+7210g () va

Returning to the proof for Theorem [0] with constant SGD step sizes, we can set the starting point s =1

and § = % in Lemma, |5 which concludes that loss function ¢, can be taken as

by = \/2—1— 16+/log (T'log (T)) (1 — 217)% +2¢/(1 4 72log (T'log (T))) /7

A B

We now show that when we take n = T*%, there exists some T, < oo such that for all 7' > T, the following

conditions always hold.

T
and Y £,>2(Ta+1),

t=Ta+1

T>max{27;\, 40 (Ta+1) }

ZkG[J] pkwk

where T4, =min{t € [T]: ¢, < S}. It is easy to see that

log (S — By/7) o log(S)+1og( —%T*%>
log(i) +log (1 — 2n) log(i) + log (127 %)

TA=1+2{ (36)

wlo

Since limy_, o %T*% =0 and limg_,.. =T~ 3 =0, we know that for large T, log ( - gT*%) =O(BT 3)=
O(T~%) and log (1 - 2T‘%> =O(T~3), so Ty = O(T*%). Therefore, for any large enough 7', we must have

T> max{?'TA M} —o(Th).

’ Zke[J] prwk
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On the other hand, note that ZthTAH 6,>B(T —Ta)\/m=B(T —Ta)T~5 =O(T3), where in the last
equality we used the fact that T, = ©(T'3). Therefore, for any large enough T, we must have ZtT:TA b=
O(T3)>2(Txu+1)=0O(T3).

Finally, to bound the regret for the CTBR with SGD and constant step size =T~ 3, by applying Theorem

we only need to bound -,

2 b \/72( —277) +TBn = \/72( 1—277) +BT3

te[T] te[T] te[T]
A 1 A 1441

< : +BTS = i + BT} (37)
VI—2p 1-VI-29 T-2n 21
A A

< —+BT3 = (= +B)T5.
2n 2

In the first equation, we recall £, = A(1—2n)" % + B\/n= \/7 (V1= 277)t +B/1. [ |

E.3. Additional Proofs for Appendix [E]
E.3.1. Proof for Lemma [3]
Proof of part (i) Recall the definitions in Algorithm 7, = max {k € [K]: 37,y prw’ > 7\/Ew€t} and

b, :max{k € K]y prd <p+ \/EJ&}. Then to show 7,y =7 and b,y =b, it suffices to show

Z ‘w' > —VEKwof, and Z piw’ < —VKwol, (38)
Le(r] Ler+1]

> piw' <p+VEdl, and Y pw’ > p+ VKL, (39)
tep] Lefo+1]

We first show Equation (38). Under the event G, = {||p, — p| < ¢;}, we have

Sy

EE[r]

> Pt >

Lelr+1] Lelr+1]

(4)
—p| < VKwt, (40)

(i9)
b, —pl| < VKwl,, (41)

where both (i) and (ii) follow from the fact that event G, holds. From Equation (40]), we have
Q)
Z Cwt > Zp —VEKwt, > —VEKwl,, (42)
Le(r] Le(r]
where (i) follows from the fact that }, ., p“w® >0 by the definition of 7 =max {k: €[K]: Y,y > O}.
On the other hand, Equation , implies:

i)
> pw' < > plut+VEwl, < —2VKwl, + VEwl, = —VKuwl,,

ZE[T+1 Ee[r+l]
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¢ ¢
_ Xeert P w

where (i) holds due to the definition of 7 such that for t > T, we have £, < e == Y PW <

—2vKwl,. Hence we have shown Equation which implies 7, = r.

The proof for Equation is basically identical: we first recognize

| pta = > v < d] - b~ pl < VKL, (43)

£e(b] Le(b]
| >0 s Y W <dl b - pll < VEdL,. (44)
Le[b+1] Le[b+1]

Then Equation implies
_ () _

D opid <Y pld' + VKL, < p+ VKL, (45)

Le(b] Le(b]
where (i) follows from b= max {k € [K] :Zle[k] ptdt < p}. On the other hand, Equation implies

_(3) _ _ _
doopd = > pldt VKl > p+2VKdl, —VEKdl, = p+ VKL,
Le[b+1] Leb+1]

00
where (i) holds due to the definition of 74 such that for ¢ > 74, we have ¢, < % = cppy P>

p~+2VKdl,. Hence we have shown Equation which implies b, =b. Finally, we can conclude that
J, = min {l;t,ft, Iia} =min{r,b,k.}=J.

Proof of part (ii) Here, we want to show that g%, ¢® > 0 for any ¢ > T4 when event G, holds. When event
G, holds, we have
; (i)
Z prw” @ Z prwt > Z pPw* — VK, (46)
kelr] ke[r] kelr]
where in (i) we used the result in part (i) of the lemma, and (ii) follows from Equation (42). Hence, from the

definition of ¢}, , we get

R

Qi1 = B 1
ATy 41+
Pt

ey it = (VE +2) oty © Trepy v =2 (VE+1)wte ;
> >0,

e ] B wret|
Zkelr] pruwk

ST Recall the definition of

Here, (i) follows from Equation l) (ii) follows from ¢, < S <

. _Zke[r+1]pkwk Zke[r]pkwk Zke[b+1]pkdk_p p_Zke[b]pkdk

S::Emin pttL prtt , ) = )
2 VEK® (\/E+1)1D VKd (x/EJrl)c?

and T4 =min{t € [T]: ¢, <S}. A similar argument also shows that under event G, for t > T4, ¢¢,, > 0;
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Proof of part (iii) We first show the following result w.r.t. the ROI constraint for ¢ > T, under event G,:

O<wt < > @Mptut < (3\/E+ 5) wl, . (47)

ke[K]

The lower bound holds because

Z Ank kk — §:pkwk+ r,+1wf,,+ ; 2 : pr+1wr+1

ke[K] ke[r] ke(r] (48)

(i) -
> Pt gt

ke[r]
where in (i) we evoked Lemma [3] (i) such that for t > T4, #, =7, and (ii) follows from Lemma [3] (ii) such

that ¢& > 0 for all ¢ > T4. Now, recalling the definition

= Zke[r] prwt — (VK +2)wt, () Zke[r] prwt — (VK + 2)wt,

= — s

- P ] P Twr

where in (i) we used the fact that r =7 under event G, for t > T4, so w! = w™*! <0 where the inequality

follows from Remark [2l Hence we have

(jltipr+l T+l _ é?ﬁ:+lwr+l+éf(ﬂ+l ]3§+1) r+1

G| X bt |+ (VEwL 4206 ) + @ (07 - ) wr
ke[r]

(i) (i4d)

> | Y dhut |+ (VR +20t) —wt, = — | 3 ptut VRl | + VRt + o,
kelr] kelr]

= — Zpkwk +'[D‘€t~
ke(r]

Equality (i) follows from the definition of ¢}(> 0). Both (ii) and (iii) follow from ||p, — p|| < £; under the
event G, which implies 37, ., (p* —p) w* < [lw]| - [P — p < VKwl, by Cauchy-schwarz, and p' — p; ! <
lp: — p|| < ¢;. Plugging this back into Equation yields our desired inequality in Equation that lower
bounds the single period ROI balance. To show the upper bound, first note that

) 0) R R 41,
D abphuet = T prut @ et = (@ - ) p e

ke[K] ke(r]
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where (i) follows from Equation (48) and (ii) follows from the definition of ¢* such that p™lw™¢* +

> ke PFw" = 0. In the following we show [(¢} — ¢*)p" 1w | < (3\/[7(+ 5) wl,;. Consider the following

|(@F —¢") p 1w
prwt
m(z’ce (‘ﬁ+2) gt_zke[rlpk“’k>
=P ﬁr—H prtl
prtl Pt
) (S ) e St St (R 2o B
ke(r] ke[r] ke(r]
49
i Zke[Tpt ’ i (49)
< et g | S e+ (VR 2) e D
ke(r]

@, ‘Zke

ﬁr+1

+1

k‘ +\/Ew£t+<\ﬁ+2)w& el

(44) +1 (i4)

< ot + VKt + (VE +2) wt, -2 el (3VEK +5) e,

Here, in (i) we utilized the fact that under event G,, ||p — p;|| < ¢, so |p"** —ﬁf“‘ <|p—p: <4, and

‘ Doke [r] —py)w
Algorithm [T} so

“|lp—P:|| < VEwL,. In (ii) we used the fact that }°, . ,p;w" <0 according to

Do DI () Ders, 40 PV
prt - pretl

> phwt < —pTwh T = wtt <,
k‘e[rt+1]
where the equality in (iv) follows from r =7, under event G, for ¢t > 7T4. Finally, (iii) in Equation holds

because for t > T4 we have £, < S < pj and hence p; ™ >prtt — ¢, > PHl

We now turn to show the following upper and lower bounds w.r.t. the budget constraint in a similar fashion:

O<dt,<p— Y @Fphd < (3\/E+ 5) dr, .
kE[K]
For the lower bound, we start off with the relation
- @) N (@) o
p— Y atkptdh = )" aPRpdt— N abhphdt 2 (qBH - (qf+1)+) priditt
ke[K] ke[b+1] kelbr+1] (50)

) A

— (qB+1 q?+1) b1 o+l ,
where (i) follows from the definition of a?; (ii) follows from the fact that b= b, under event G, for ¢ > Ty, and

(iii) follows from ¢i** > 0 for ¢ > 74 according to Lemma |3 (ii). Then, we have

A (i)
(qs+1 _q$+l)pb+1db+1 = p— Zpkdk B+1 b+1db+1

Z pkdk AB+1 Ab+1db+1 +4 AB+1 (ﬁzt)+1 pb+1) db+1
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(i) (p— Zpkdk) Z ol (\F+2) de,) + G (Tt — prtt) att
ke[b]

ke[b]

(VE+2)de+ > (3 —pt) di+a (5 =) !
kelb]
(ii7)

> (VE+2)dt,~ VEdl,~dt, = dt,.
Here (i) follows from the definition of ¢**' such that ), p*d" +¢**'p**'d"* = p; (ii) follows from the
definition of ¢*** and the fact that b= b, under event G, for ¢ > Ty; (iii) follows from [p+? — p**1| < [p—p¢|| <

¢ and ‘Zke[b] (py —p*)d*

bound.

<VKd||p — p.|| < dl,. Combining this with Equation yields the desire lower

On the other hand for the upper bound w.r.t. the budget constraint, we start from Equation (50)),

o= 3 sty
kE[K

b+1db+1

@ =)

vt [P Dkem Prd* = (*/I?Jr 2) Al p— ey ptd*
= P P - P

Pt phtl
= |G ) o St | - St ot |+ (VR w2 B

D ke(b] ke[b) ke(b]

; 51)
A ’P - Zke[b] pfdk’ R pttt (
< -t e T > (o —ph)d" (\ﬁ+2) dt, - Ab+1
ke[b]

@ ’P D e Prd* _ o
< ¢ ﬁb+ + VRl + (\/?+2) - s

(33)

< dl,+VEKdl, + (\F+2) de, -

(44d)

< <3x/l7+ 5) e,

Here, in (i) we utilized the fact that under event G,, ||p — p.|| < 4, so |p**! —p*T1| < ||p — p.|| < 4, and

Zke[b] (ot —pr)d”

according to Algorithm [I] so

Ab+1

<||d|| - [[p — pell < VEdL,. In (ii) we used the fact that Y-, PFd* <p <32, 5,41y Prd*

Ak 7k

pP— Zke[b+1] pyd* (iv) P~ Zke[6t+1 pid

be+1 7
po+1 ﬁgt'H <d <d,

O<p_z kdk bt+1db,+1:>O<
kelbs]

where the equality in (iv) follows from b= b, under event G, for t > 7. Finally, (iii) in Equation l) holds

b+1

b .
because for t > T, we have ¢/, < S <2 ;1 , and hence p*T! > pttt — ¢, > -

Proof for Lemma @ (iv) In Equation within the proof of (iii),we showed

(G -4 pr+1wr+1| < (3\/7(4— 5) wl, .
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Hence using the fact that |[w™™| > w, we get [(¢F — ¢*)p 1| < (3\/?4— 5) 2¢,. Similarly, in Equation
within the proof of (iii), we showed |(¢® — ¢®) p**1d" | < (3\/[7{+ 5) dl,, so using the fact that [d" | > d, we

get |(¢F —¢*)p" < (3\/?+ 5) 4y, -
E.3.2. Proof for Lemma Recall the updates step of SGD: P, 1 = argmingea . || — (P: — ¢ (e — ¢))||-

Then, the contraction property for projections imply
lp—Pi1 ||2 <lp— P —m (P — 5t))||2 =|p _ﬁt”Q +20,(p — D1, Pe — 8¢) + 77t2||ﬁt - St||2 .

Hence, we have

[P —Pes1ll? < [|p—Dell? + 20 (P — D, Be — 8¢) + 071D — s 1°

—~
INE
&

p *ﬁtHQ +21,(p — Pr, D: — S¢) +477t2 = (1-2n)[lp *ﬁt”2 +20 (P — P, P — S¢) +477152 (52)
—_—
=27

4
= (1) lp— pt||2Jr Zt 20

where in (i) we used the fact that ||p, — s.|| < ||D:|| + ||s¢]| < 2.

Now, telescoping the above recursive inequality until t =2 we get

=t *zz (11(1—))2 +4Z (11(1—3))
e )

t

4
< =) (T—l)ZT—&—;.

T=2
Here, (i) and (ii) follow from:

i j— T(r—=1) (r—1) i T—1 1
1 (1-2)= 11 252 -5 ZTQ(H) 2t

j=7+1 j=7+1 T=2

Then it is easy to see E [(t -1)Z,

ft_l} —0forallt€[T],s0 {(r—1)Z,}.

]'—1—1] =(t-1)E [<p*13t7p* 8)
is a martingale difference sequence w.r.t. the filtration {F,},. Furthermore, (7 —1) Z, for all 7 <t is bounded

uniformly by
(T=1)Z| = =) [(p=prp—s)<(T=Dp=p:-[p—s.[[<2(7-1)<2(t-1)
and the conditional variance of 2 (7 — 1) Z, is bounded as followed w.p. 1:

R ) R
Var ((r=1) Z,|F, 1) = (1= )’E [~ prp— 52| Fa] £ 4(0=1)7 o= 5.1,
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where in the final inequality we used Cauchy-Schwarz and ||p — §,|| < 2. Hence, using Lemma[7] w.p. at least

1—¢ for any § € (0,1/¢) the following holds for any t =2...T"

;(7—1)27 < 10g(log6(T)>max 8 ;(7_1)2”17—@”2,4@—1) log(log(s(T)>

< log(log(;(T)> 8 [0 Ip Bl +4(t 1) 1og<1°g5(T)>

T=2

Plugging this back into Equation , w.p. at least 1 — 0 we have

t

Ip =Pl < t(,fl) log(logé(T)> 8\ 2o (=D llp =l + 4 - 1) 1og<10g5<T>) +2

T=2
164 /log (log(T)) ¢ , 8log (%) +4
SR SN “ 12 |p—p. |2 : 54
=) Z;ﬁ ) llp—p- 12 + " (54)
v i c
— b =¢

t(t—1)

The remaining is an induction argument, where we find some constant a > 0 independent of ¢ such that

|p—p:||* < ¢ for all ¢t € [T] (induction hypothesis). E' Equation and the induction hypothesis imply

b i 9 . c
b : c b c 1 b(t+1) c(t+1)
= )\‘ﬂ%“”ﬂ a 2t(t—1)\/a+¥ a t+1< 215(15_1)\/&+ t >
1 3
>~ m §(b\/&+0>.

where in the last inequality we used that fact that for all ¢ > 2, t*(tl < 2 and 4t < 3. Hence, it

+T
(@]
Q12

suffices to have a > 0 such that 2 (by/a+c¢)<a= a >3 (3’; 44/ 22

7} ) Using the basic inequality

2 (2% +y?) > (z + )2, we can take

2
log (T’ 2 1 2
a:60010g(0g( ))+12:9b+302<3b+ 9b—|—6c>

0 4 2\ 2 4

6001og(%)+12

This concludes that the loss function ¢, can be taken as ¢, = n

E.3.3. Proof for Lemma Following the same proof as in Equation , we have

[p* —Derall® < (1=2n) |p" — P> + 20, (" — Do, — 50) +40]
|

=2t

= (1-2n)[lp" —p:|* +20Z. + 49> .

20 Note that the variable b here is local to this lemma and different from the budget index.
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Now, telescoping the above recursive inequality until the starting point s € [T'], we get

t t
Ip—pell> < (1=20) " |lp" = P> +20) (1 —20)"" Z +4° ) (1 —-2n)""

(i) i
< 2(1-2n) T (-2 (1-2n)7 Z, + 2. (55)

T=s

In (i) we used the fact that > ' (1—2p) 7 <>! _(1-2pn)" " = ﬁ We now describe a high

probability bound for the summand >.__ (1—2n)"" Z.. It is easy to see E[(1—277)_T Z,

Foa] =

1-2n)" "E|{(p—pP,,p—8,)|Fi1| =050 {(1—-2n)"" Z,} is a martingale difference sequence w.r.t. the
n n B

filtration {F,},. Furthermore, (1 —2n)"" Z, is bounded uniformly by

(1=20)7"Z| = (1-20) " [{p—Pe,p—5)| < (1-20)" [p—5:-|lp— s

<2(1-2p)77 <2(1-2p)".
The conditional variance of (1 —2n)~" Z, is bounded as followed w.p. 1:

B 0 L
Var((l—Qn) Z, fH] < 2(1-2n)"" |p—p-|°,

J-‘H) =(1-2n)""E [(p—ﬁr,p— s:)°

where in the final inequality we used Cauchy-Schwarz and ||p — §,||> < 2. Hence, using Lemma [7} w.p. at least

1—§ for some 6 € (0,1/¢) the following holds:

A

> (=277, < log(bgé(T)>max 8\ S (1-20) " lp—p. 2,4 (1~ 29) " 1og<1°g5<T>)

T=s T=s

log(log(s(T)> 8 Z(l_2n)_2T||p_ﬁr||2+4(1_271)_t 1og<10g6(T))

Plugging this back into Equation and denoting ¢ =, /log (log(T)), w.p. at least 1 —§ we have

IN

5

t

Ip—Peal® < 20 —2p) "+ 16nc(1—2n)" | > (1—=20)""" |[p—p. >+ (2+8¢*) n. (56)

The remaining is again an induction argument, where we find some constants a,b > 0 [*f] independent of ¢

(but possibly dependent on T') such that

lp—p:l?<a(1—2n)"""""+bn Vit=ss+1....

21 Note that the variable b here is local to this lemma and different from the budget index.



o7

We do so by considering the induction step, i.e. ||[p —py||? <a(1— 277)’&/75 +0bn forallt' =s,s+1...t, and we

t+1—s

aim to show ||p — Py <a(1—2n) + bn. Using the induction hypothesis we have

t t

S (=2 p-p7 < D (1-2n)"" (a(1—2n)"" +bn)

t t
s ., _or a e b _
=a(l-2n)") (1-2n) "+bp) _ (1-2p) 7 < %(1—277) *+§(1—2n) 2
In the last inequality, we used the following
: 1 1
1—2n)" = —(1—2 (12 —“—1)) < —(1—2p"
;( 0) 7 (1=20)7 = (1—20) < g, (1=2)
. 1 1 1
1—29)7 % = 7(1—2 2 (1-2 —2“—”) < —— (-2 < —(-29)"*".
;( ) gy 2 - 2) < goap - <5 -

where we used the fact that 4n — 4n? > 2n for any n < % Hence, combining this with Equation , we get

A —s —s 1 b
Ip—Pesa]® < 2(1—2p)" +16nc\/a(1277)t '%+§+(2+802)n

(1)
< 20 -2m) 7 16ey [(1—2m) - Tt (2862 +16evb)

(i4) 8 3
< (2 + 1_;}) (1—2n) ' 4 (2 +8c2 +16¢vVb+ 4ac> n

< (2+4160) (1—2n)" " + (2+8c2 +16¢Vh +4ac) m, (57)

where in (i) we used the inequality /= +y <+/z+/y; in (i) we used the inequality ,/zy < *7¥; in (i) we
recall that 7 < 1.

Now, if we take a:=2+ 16¢=2+ 16, /log (%), and b such that

b>2+8¢® +dac+ 16cVb = Vb > /2 + 8¢% + 4ac + 8¢,
then following Equation , we can conclude
1= e < (2 166) (1 — 2) by =a (1 - 2) 4 by
To find such a constant b, we use the basic inequality (z + y)2 <2 (2% +y?), and thus can take
log (T
b:=4 (1 +72log (Oga()» >4(144c+68¢%) = 2(2+48¢” +4ac+ 64c?)

2
> (\/2+8c2—|—4ac+86) .

In the equality, we used the definition a =2+ 16¢. We conclude the proof by realizing for the a,b that we chose
above, ||p—p.||> <a(1—2n)"° +bn holds for the base case t = s because trivially ||p — p,||> <2 < a+ bn.

Finally, using the inequality /x4y </z + /y concludes the proof. |



o8

F. Proofs for Section
F.1. Proof of Theorem [5l

Our proof relies on the following fact

Fact 1 If price d € D is nonbinding, then the corresponding optimal solution x4 to U(d) is &y = (1...1) € R7.

Proof. We prove the claim via contradiction. Assume there is some index k € [N] such that % < 1. Then

consider the solution & = (x}... 2871 y 25T | 27) where we replaced the k’th entry of 2, with
P=2ne 9" %0 2onen (V" =) 9" | )
k . ne[N] d ne[N] d
= +e, here € :=min , >0,
R { dg* V* = yd| g*

where (i) follows from x, is nonbinding, i.e. p>3" 1y, 9" and 3 1\, (V" —~d) g"z; > 0. Then

ng:c ng"m§+dge<ngx+ prg":rg =p.

n€[N] n€[N] n€e[N] n€e[N]

On the other hand, if V* —~d > 0, then

Yo (Vreyd)gray =Y (V' =ad)g e+ (VE—qd) ghe> Y (V" —d) g > 0.

n€e[N] n€e[N] ne[N]

If V¥ —~vd <0, then

S (Vrerd)giay = > (VP —vd) gl + (VP —vd) ghake

ne[N] n€[N]
Done V' =7d) gz
> Y (Vhead)gtag o+ (VE = yd) - S =0
ne[N] ‘ -7 |

where in the last equality we used |V* —~d| = — (V* — vd) since V* —~vd < 0.
The above shows @ is feasible to U(d). On the other hand, > V"¢ "z <3, (v V"9 2", so @ yields
a strictly larger objective than x,, contradicting the optimality of x,. |
We now return to our proof for Theorem [5}
(1). When both d, d are non-binding, Fact [1| implies &, = xy=(1...1).

ng ng<ng— Z ;izﬂ(g).

n€e[N] n€e[N] n€[N] née[N]

(2). We prove this claim by contradiction. Assume dis non-binding and d > d where d is budget binding.

Fact |1| states that ;= (1...1). Hence

d):ng gng"x"<ngx gp,

ne([N] ne[N]
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where (i) follows from the definition that d is non-binding. Hence we obtain a contradiction, and d cannot be
non-binding. This means d must be budget or ROI binding.

(3). Here we show that if some price d € D is ROI binding so that 3_ \(V" —~yd)g"2j =0, any price
d > d must also be ROI binding. We first claim that ;=< x,. To show this, we use a contradiction argument.
Assume x ;> x4, and let the threshold vector @, be characterized by x4, =(J’,¢’). Under Assumption |I} we

note that @, cannot have all 0 entries and hence z} > 0. However, since ) (V" —~d)g"zd =0, it must be

n€[N]
the case that xJ 1 <0. Now, applying the ordering property for threshold vectors in Lemma (ii) by taking

Z=xj7and Y =x,, we have

OZZ(V"— gxd>z V"—’ydg":r”>z —vd "

n€[N] n€[N] n€[N]

In the last inequality we used the fact that d>d. Hence, this contradicts the feasibility of x 3, so we conclude
that ;=< x,4. This further implies

p>d Y g vag@isz LIS gt

ne[N] nE[N ne [N] ne[N]
—_—— —_———
=n(d) =n(d)
where (i) follows from d being ROI binding, i.e. 3 (V" —yd)g"zj = 0; (ii) follows from @z =< x; (ii)
follows from feasibility of d so that Donen (V" — Wd)g"x;i > 0. Therefore, p > 7(d) > n(d).
Finally, p > 77((7) implies that d is either non-binding or ROI binding. We note that it is not possible for d
to be non-binding, because d non-binding implies ¢ ;= (1...1) according Fact |1} contradicting x; < &, which

we showed earlier. Here we used the fact that &, # (1...1) because x; is ROI binding and Assumption

states for any d€ D, > (V" —~d)g" #0. ]
F.2. Proof of Theorem
For a fixed T' we use the shorthand notation ¢ = ¢(FE,T) in this proof. Because ¢(T"' ¢, T) < & for all
T > T., and because the exploration episode length is E =T'~¢*¢, we know that ¢ < 2%

Recall 7(d) := dZnE[N] g™l for any d € D is the per-period seller revenue function defined in Equation
7 and (D) = \?;hl > ies, %t the estimate of m(D,) for episode h € [H] (with fixed price Dy). Since our the
binary search procedure in our proposed pricing Algorithm [2| has exactly H = |log,(M)] + 1 iterations , the

boundedness condition for a £-adaptive algorithm can be restated as: w.p. at least 1 — =

#(Dr)
Dh Dh |gh| tEZS

<¢:> |%(Dy,) —7(Dy)| < Do < dg. (58)

Our proof relies on the following lemma:
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Lemma 6 If #(D;) > #(D;) for some episodes i,j € [H] (i # j), then w.p. at least 1 — &, w(D;) > w(D;).

Furthermore, this implies the event G = {7(D,) > #(D;) = n(D,) > n(D;) for alli,j € [H]} holds with prob-

H(H-1)

57— where H = |log,(M)] + 1 is the total number of binary search iterations (i.e.

ability at least 1 —

number of episodes in the exploration phase).

T00f. ecause 7(D;) > 7(D;), applying Equation or episodes i, j yields
P B 1(D;) > (D lying E ion (58] f isodes i, j yield

m(D;) +d¢ > 7(D;) > #t(D;) > m(D;) — dp = 2d¢ > w(D;) — 7(D;),

Now, contrary to our claim, suppose that w(D?) < w(D?).We then have

2d¢ > n(D,)—m(D;)>G= _ min 7(d) — 7(d)

d,deD:m(d)#w(d)

)

which contradicts the definition of &-adaptivity such that 2d¢ < G for episode lengths Q(T1~¢). As there are

H(H —1)/2 pairs (4, 7) such that ¢ # j, a simple union bound shows event G holds with probability at least

1— H(H—l). [

2T

We now return to our proof of Theorem @ We first show that under event G =
{#(D;) > #(D;) = n(D;) > w(D,) for all i,j € [H]}, we have maxyep 7(d) =7 (D™ ) where we recall that
m* = argmax,, e 7 (D™).

We use an induction argument that shows after each iteration of the binary search procedure in the
exploration phase of Algorithm [2} 7(D™) < 7(D™") for all m <L and m > R. The base case is the first

iteration, where we have L=1, R=M. If m* =L =1, then under event G we get
#(DY) > #(DM) 2 (DY) > r(DM).

Hence after the first iteration w(D™) < w(D™") for any m <L and m > R. The case for m* =R follows from
the same argument.

Now assume that the induction hypothesis holds, i.e. at the beginning of some iteration with the tuple
(L,R,m*), we have 7(D™) < 7(D™") m <L and m > R. According to Algorithm [2| we only need to show two
cases in order to validate the induction procedure.

e Case 1. If #(D™) < #(D™4*1), then we show w(D™) < w(D™4*1) for all m=1...med +1

e Case 2. If #(D™4) > #(D™+1) then we show 7(D™) > w(D™9) for all m=med+1... M
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Note that under Case 1., med + 1 will be the new value of m* in the next iteration (i.e. the next induction
step). So by showing 7(D™) < w(D™¢+1) for all m =1...med + 1, we validate the induction hypothesis for
the next induction step. A similar argument holds for Case 2.

Case 1. When 71(D™?) < 7(D™4*1) under event G we have w(D™*?) < 7(D™4*t1). We claim that D™
cannot be an ROI binding price. Assume the contrary that D™ is ROI binding. Then, part (3) of Theorem
states w(D™edT!) < w(D™4), leading to a contradiction. Hence D™°? must be either a nonbinding price
or a budget binding price. Applying part (1) of Theorem [5| we can then conclude that for any m < med,

7(D™) < mw(D™?), so
©(D™) <m(D™) < (D™ Ym=1...med.

At the end of the iteration, as we update m** =med + 1 (here we denote m*™ as the updated value to distin-
guish from its initial value at the start of the iteration), we have 7(D™ ") > w(D™d+1) > r(D™ed) . 7(D').

On the other hand, since #(D™ ") = MAX,e (e medt 1} T(D™) > 7(D™), event G implies
—t Q)
(D™ ) >n(D™ ) >m(D™) Vm=R...M,
where (i) follows from the induction hypothesis. Therefore, we have
(D™ ) >x(D™) VYm=R...M and m=1...med+1,

and by realizing (med + 1,R, m*™) is the initial tuple for the next iteration concludes the induction step.

Case 2. The case when #(D™?) > #(D™*1) follows from an identical argument, and we will omit the
details. This concludes the induction proof.

The above implies that when the event G = {#(D;) > #(D;) = n(D;) > w(D;) for all 4,j € [H]} holds
throughout the exploration phase, the above induction argument implies we have 7(D™") > 7(D™)for all m €
[M]. Hence m(D™") = maxgep 7(d) w.p. at least 1 — 1{(;{7;1) according to Lemma@where H = |log,(M)] +1.

Furthermore, we point out that in each iteration of the binary search procedure the seller explores at

most two prices. Hence exploration phase, which we denote as &£, has length at most 2F (|log,(M)|+1) =

2T1=¢%< (|logy(M)| + 1) periods. Therefore, the seller’s regret can be upper bounded as

T
Reg,, = Tmaxn(d)— Y E[dz] < dE[+ max 7 (d) —E [d,z]

deD
te[T] t=|&|+1

—~
.
N2

< dgl+ Y E[(r(D™) - D™ 2) 1{GY] + d(T — [E))P(G°)

te[T]/€
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7(D™) 1

<d D™ (T — -E -
< d|g|+ (T — &) D T—E|

Y & LG +d(T—|ENP(G°)

te[T]/€
(i3)  _ _ _
< d|E|+2dT - ¢ (T — |E|,T) +dTP (G°)

(? 2d (|logy(M) | +1) - T =T +2dT¢ (ZT) +d([logy(M)|+1)% /2.

In (i) we used the fact that max,ep 7(d) = 7(D™ ) under event G and d, = D™ for all exploitation peri-
ods t € [T]/€; (ii) directly follows from the definition of event G. In (iii), we used the fact that T >
(4d |log,(M)] + 4&)5%5, which implies 7€ > 4d [log,(M)] + 4d and hence T > 2d (|log,(M )|+ 1) T*~¢F< >

|€|. As ¢ is decreasing in the first argument, we then have ¢ (£,7) > ¢ (T — £, T). |

F.3. Proof for Theorem

In this proof, we show a more detailed statement by constructively checking the boundedness and stability
conditions for £-adaptive algorithms. In particular, let C and S be defined as in Theorems [§] and [0} Define

A, B and T as the following:

A= \/2 +16+/log (T?1og (T)), B=2+/(1+72log(T?log(T))),

and
0y 2 t = 1 1
T:min{te [T) :A(1—2T7§> +BT" 3 <S} =0(Ts).

To see why , please see Equation and the discussion following Equation (36]). Define

_ [2log(2T?) T ATE S ) 1 Ti
¢(T,T)—\/T+T+C<T+BT >_®<ﬁ+T+T ) (59)

and for any fixed € € (0, §), assume that entire time horizon 7' is large such that (T34, T) < =% Let the
entire T periods is divided into H consecutive episodes & ...Ey where the price in episode h € [H] is fixed to
be D) € D, and the buyer runs CTBR 4 with SGD and constant step size n = T-3. We will show that

(1) ﬁztesh 2 — ”(D#;h) < @(|€x|,T) for any episode h € [H] w.p. at least 1 — %;
(2) ¢(|&€],T) < & for any episode h whose length [£,| > T3te,

Note that showing (1) and (2) would imply that CTBR 4 with SGD and constant step size is %—adaptive. We

show (1) first, and then deduct (2) through a simple argument.

22 Note that ¢(T%+E7T) =0O(T™°) so there always exist large enough T" such that ¢(T%+€, T)< 2%
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Our proof for showing (1) consists of 2 main steps, namely Step 1. providing a reformulation for = (D},);

Step 2. showing a high probability bound for > z;; and Step 3. bounding w(D),) — > Z.

tegy, te€y

Step 1. Reformulation for 7(D),).
As discussed in Section @ the sets {D™},.c(an and {V"},ein) can be thought of as the unique values of
highest competing bids and valuations, respectively, in the set W = {(v*,d*)} (k] studied in Sections
and [5l In other words, W =V x D, where K = M N. Furthermore, if we impose any distribution g € A;; on
support D, then g combined with the valuation distribution g on V induces a product distribution p=g x g
over W. Hence, in each episode where the prices is fixed to D™ for some m € [M], the imposed distribution
g € Ay, on the support of prices D is the m’th unit vector e™ € A,;. Hence, the valuation-price pairs (v,,d;)
can be viewed as being drawn from the induces product distribution p =g x e™ € Ag over W.

Following this argument, we can denote the induced distributions for the valuation-price pairs (v, d;) in
each episode h € [H]| as p;,. Hence, we can directly apply Lemma (that we used in the proof of Theorem E[)

with § = %, and conclude for any t € £,, we have w.p. at least 1 — %

pn — Bl < /2 + 16/Iog (TTog (T)) (1 — 20) =" +2/{1 + 721og (Tlog (1)) /7. (60)

e -5

where we defined s, to be the first period in episode h, i.e. s, =min{t:t € &,}, and recall the constant
step size n= T-3%. Furthermore, as argued in Section @ the problem U(D),), defined in Equation , and
U(pn;0,7, p) which is defined in Section {4 are equivalent. Hence, the seller’s per-period revenue is

w(Dy) =D, Z x’p, 9" = Dy, Z ok

nG[N] kE[K]

where x4 € [0,1]V is the unique optimal threshold vector solution to U(d) and x} € [0,1]¥ is the unique
optimal threshold vector solution to U(py;0,7,p). We let the threshold vector x; be characterized by
(Jn,qn) € [K] x [0,1). Then we can further write the seller’s revenue for episode h as

7D =Dy Y ai*pk =Dy | D v +awpit™

ke[K] ke[Jp]

Note that pf =0 for all k € [K] such that d* # D, and also it must be the case that p;* " > 0.

Step 2. High probability bound for Ztesh 2.
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Let F; be the sigma algebra generated by {(v,,d,,b,)} which characterizes all randomness in the

Telt]?
buyer and seller’s behavior up to period ¢t. According to the posted price version of CTBR 4, the take/leave
indicator z, =1{b, > d;} where b, is the virtual bid that is not submitted and only used to decide whether to

accept price d, or not during period ¢. Further, recall the threshold vector &, = ¢(ju G:) in CTBR 4 for t € &,

is the estimate of x;, and note that &; is F,_;-measurable. Then, for t € &, we have

]—'t,l} ~—E {dtzt :i:t} ~E [dtﬂ{thdt .f;:t}

. v vy .
Q-q) Y d’fpizﬂ{e’“ zeff}m > d’“piiﬂ{H’“ > 671}

E [tht

ke[K] ke[ J¢]
el Jitl ()
= N dpl+ad" pl 2 D[ ST phamlt
keldil keli]

where in (i) we used the fact that when period ¢ belongs in episode &;,, (v;,d;) ~ py; in (i) we used the fact
that p¥ =0 for all k € [K] such that d* # D,,. This implies that by defining Y, = > okeldi] pr+ qtp‘]”r — 2, the
sequence {Y;};ce, is a martingale difference sequence. Also, since it is easy to see that |Y;| <1, by Azuma

Hoeffding’s inequality we have for any § € (0,1)

P (5) >1—0 where Q:: Z Z P +qthf+1 2 || < V2|l log (2T72) 5 . (61)

te€p \kelJi]

1

In the following we will take § = = so event G holds w.p. at least =

Finally, by applying Lemma (i) for t — s, > T, under event G, = {th —p] < A (1—2n) = + B\f}
have J, = J,. Furthermore, following the exact proof of Theorem |8 (where we bound the regret), we can

recover Equation (34)), which in the episodic pricing setting states that under event
Go={llp.—p <A(1-20) =" + By}
for t — s, > T we have
a1 w d t=sp
lan = @ p" ! < maxd 2, (3f+5)( (1=20) =" +Byi) . (62)

Recall Equation implies event G, holds w.p. at least 1 — =5

Step 3. Bounding ~ (Dh) = Diee, Fe

We now combine the results of Step 1 and Step 2 in the above Equations and , when the event
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G N (Ne=7G:) holds, we have J, = J,, where (J,,q,) € [K] x [0,1) characterized the threshold vector z;, € [0, 1]%

which is the unique optimal threshold vector solution to U(ps;0,, p). Hence, we have

Z(W(Lih)—zt)‘ = DD phtairtt -2

teEy te€y \ ke[Jp]

< 0SS phraw a0 DD s - S o

te€p \ke[Ji+1) te€p ke[Jy] ke[
141 ~
< I Y pbvanr T s AT Y g —dlp™
te€y \kel[Ji+1] t—sp>T

\&\ SH

< /2[€]log (217) +T+max{ }(3f+5) (2 > (1—2n)t_;h+§|5h|\/ﬁ>7

t—s,>T

where in (i) we used the fact that J, = J,
(ii) we plugged in the Azuma-Hoeflding inequality result showed in Equation (61)) with 6 = %
Since G, holds with probability at least 1 —

T2 , it is easy to see the event Gn (N¢>7G:) holds with probability

at least 1 —T - % =1- % via applying a union bound. Hence, we have w.p. at least 1 — %

7TDh
i s

Ihl

teey,
2log (272) T {1[; J} A sy
< e +maxq —,— 3\/7+5 1—2 2 +B
|€h| |gh| w d ( ) |‘€h| teE), it— >T( 77) f
hit—Sh
@ [2log(2T?) T {w d} i B
S L tmaxd —, = S (3VK+5) | —T3+BT 35 | = ¢(E&.,T).
e e g VE ) (g SET)
In (i) we used the fact that >°, ., _ _,(1— 277)%’1 <= (- 277)% =T 1+ 271’7271 < %] The final

equality follows from the definition of ¢(7,T) in Equation .
Finally, from the definition of ¢(7,7) =© (\f + Q +T"3 ) we have ¢(T3+,T)=0 (max {T_G,T_é })

Therefore, there exists e = ©(1/log(T)) and Ty > 0 such that ¢(T3 1<, T) = ¢(|E,], T) < Sforall T>T, M

F.4. Proof of Corollary

In Equation of the proof of Theorem [7| (see Appendix [F.3)), we characterized the universal error function
¢ for constant step size SGD. Simply plugging this error function into the general regret of our proposed

seller algorithm in Theorem [f] yields the desired result. |
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G. Supplementary Lemmas

Lemma 7 (Lemma 3 in Rakhlin et al.| (2011)) Let Y;...Yr be a martingale difference sequence with

a uniform bound |Y:| <b for all t. Let V, = Zte[s] Var(Y;) be the sum of conditional variances of Y;’s up to

index s. Further, let o, =+/V,. Then we have, for any 6 € (0,1/e) and T >4,

P Z Y: > 2+/log(log(T")/0) - max {208,17 log(log(T)/S)} for some s<T | <§.

tE[s]
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