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We study robust versions of pricing problems where customers choose products according to a general extreme

value (GEV) choice model, and the choice parameters are not given exactly but lie in an uncertainty set. We

show that, when the robust problem is unconstrained and the price sensitivity parameters are homogeneous,

the robust optimal prices have a constant markup over products and we provide formulas that allow to

compute this constant markup by binary search. We also show that, in the case that the price sensitivity

parameters are only homogeneous in each subset of the products and the uncertainty set is rectangular, the

robust problem can be converted into a deterministic pricing problem and the robust optimal prices have a

constant markup in each subset, and we also provide explicit formulas to compute them.

For constrained pricing problems, we argue that the formulation where the aim is to find purchase prob-

abilities that maximize the expected revenue while satisfying some expected sale constraints, even-though

convenient to use when the choice parameters are exactly known, is not appropriate in our uncertainty

setting, as there may be no fixed prices under which the resulting purchase probabilities always satisfy

the expected sale constraints when the choice parameters vary in an uncertainty set. Thus, we propose an

alternative formulation where, instead of requiring that the expected sale constraints be satisfied, we add a

penalty cost to the objective function for violated constraints. We then show that the robust pricing problem

with over-expected-sale penalties can be reformulated as a convex optimization program where the purchase

probabilities are the decision variables. We provide numerical results for the logit and nested logit model to

illustrate the advantages of our approach. Our results generally hold for any arbitrary GEV model, including

the multinomial logit, nested or cross-nested logit.
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1. Introduction

In revenue management, pricing is an important problem that refers to the selection of prices for

a set of products in order to maximize an expected revenue. This is motivated by the fact that

prices are key features that may significantly affect demand for products. The literature of multi-

product pricing has seen a large amount of studies focusing on how to set prices when customers

purchase products according to a discrete choice model (e.g. Talluri and Van Ryzin 2004, Gallego
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and Wang 2014, Zhang et al. 2018). In general, finding prices is challenging as the discrete choice

model becomes more complicated. This is a well-known trade-off between choice model complexity

and operational tractability in revenue management. In a recent work, Zhang et al. (2018) study

the pricing problem under the general extreme value (GEV) family of choice models (McFadden

1980). Their results are general, as they apply to any choice model in the GEV family, e.g., the

multinomial logit (MNL) and nested logit models, to name a few. To the best of our knowledge,

existing studies all assume that the parameters of the choice models are known in advance or can

be estimated exactly from data. Thus, the corresponding pricing optimization models are built

based on the pre-determined parameters and ignore any uncertainty associated with the estimates.

Nevertheless, in practice, the parameter estimates may vary significantly for different customer

types or in different purchasing periods of the year. Thus, ignoring such uncertainties may lead to

bad pricing decisions.

In this paper, we formulate pricing optimization models explicitly taking into consideration

uncertainties occurring in the determination of choice parameters when customers make purchases

according to choice models in the GEV family. That is, we assume customers’ behavior is driven by

any choice model in the GEV family such as the MNL or nested logit model, and the parameters of

the choice model are not given exactly but belong to an uncertainty set. In other words, we consider

robust versions of the pricing problem under GEV models considered in Zhang et al. (2018).

The goal here is to maximize the worst-case expected revenue when the estimates vary in their

support set. We consider both unconstrained and constrained problems where the price sensitivity

parameters (PSP) are homogeneous or partition-wise homogeneous, i.e., the set of products can be

separated into disjoint subsets and the PSP are the same in each subset but can be different over

subsets. Our results for unconstrained problems hold for any choice model in the GEV family. For

the constrained problem, we argue that the constrained model relying on purchase probabilities

as decision variables is not appropriate for a robust version. Therefore, we propose an alternative

formulation by adding a penalty term for violated constraints to the objective function. Our results

in this context holds for the MNL model and for any choice model in the GEV family where the

choice probability generating function (Fosgerau et al. 2013) has a separable structure.

Form now on, when saying “a GEV model”, we refer to any choice model in the GEV family.

Each GEV model can be represented by a choice probability generating function (CPGF) G(·)

(see our detailed definition in the next section). To relax the homogeneity of the PSP, we need to

assume that the CPGF has a separable structure, which means that G(·) can be written as a sum

of sub-CPGFs, each corresponding to a subset of products.

Our contributions: We consider robust versions of the standard pricing optimization problem

under GEV models. The setting here is to assume that the parameters of the choice model is
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not known with certainty and the aim is to find optimal prices associated with products, which

maximize the worst-case expected revenue when the choice parameters vary in an uncertainty set.

For the unconstrained problem with homogeneous PSP, we show that if the uncertainty set is

convex and compact, the robust optimal prices have a constant markup with respect to the products

costs, i.e., the robust optimal price of a product is equal to its unit cost plus a constant that is the

same over all products. We also provide formulas that allow to efficiently compute that constant

markup by binary search. This finding generalizes the results for the deterministic unconstrained

problem with homogeneous PSP considered in Zhang et al. (2018). We also provide comparative

insights showing how the robust optimal revenue and the robust optimal constant markups change

as functions of the uncertainty level (i.e., the size of the uncertainty set). Our results in this case

holds for any GEV model and with any convex, compact and bounded uncertainty set.

For the unconstrained problem with non-homogeneous PSP, similarly to previous studies (Zhang

et al. 2018), we need to assume that CPGF is partition-wise separable and in each partition,

the PSP are homogeneous. We show that if the uncertainty set is rectangular, then the robust

problem can be converted equivalently into a deterministic pricing problem with partition-wise

homogeneous PSP. As a result, the robust optimal prices have partition-wise constant markups,

i.e., in each partition, the robust optimal prices have a constant markup with respect to their costs,

and these constant markups can be computed by explicit formulas. We further show that, with a

general uncertainty set, a partition-wise constant markup solution might be optimal to the robust

problem. However, such solutions might not exist or are not easy to compute in a tractable way.

We also provide comparative insights for the robust optimal prices and solutions when the size of

the uncertainty set varies.

For the constrained pricing problem, as motivated by the applications with inventory consider-

ations (Gallego and Van Ryzin 1997), previous studies (Zhang et al. 2018, Song and Xue 2007,

Zhang and Lu 2013) also look at constraints on the expected sales. In this context, the aim is

to select prices that maximize the expected revenue while requiring that the expected sales of

products lie in a convex set. The advantage of such constraints is that the pricing problem can

be reformulated equivalently as a convex program where the decision variables are the purchase

probabilities. However, the final decision is a vector of prices and there may be no fixed prices

under which the resulting purchase probabilities always satisfy the expected sale constraints when

the choice parameters vary. For this reason, we consider that the use of the constrained formulation

is not appropriate in our setting. Thus, we propose an alternative formulation in which, instead of

requiring that the expected sale constraints are satisfied, we add a penalty cost to the objective

function for violated constraints. Our formulation, called pricing with over-expected-sale penalties,

is more general than the constrained formulation, in the sense that we show that if the penalty
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parameters increase to infinity, then the corresponding optimal solutions will converge to those

from the constrained problem, and with zero penalty parameters, the pricing problem becomes

the unconstrained one. Since the robust version under over-expected-sale penalties does not seek

a price solution that satisfies the expected sale constraints under choice parameter uncertainty,

it is more appropriate to use than the constrained version. We show that if the choice model is

MNL and the uncertainty set is rectangular, then the robust problem can be converted into an

equivalent deterministic pricing problem with over-expected-sale penalties, and this deterministic

version can be solved by convex optimization. Our results also hold for any GEV model with a

separable structure and under some restrictions on the parameters of the expected sale penalties.

In summary, we show that robust versions of the unconstrained problem are tractable, in the sense

that the robust optimal solutions are shown to have constant markups with respect to the product

costs, and we provide formulas to compute these constant markups efficiently. For the constrained

version, we propose the formulation with over-expected-sale penalties, which is rational to used in

our uncertainty setting, and show that the corresponding robust problem can be reformulated as a

convex optimization problem, which is indeed tractable. Note that one may consider a stochastic

approach to deal with the uncertainty issue, i.e., a model aiming at maximizing an average expected

revenue over a finite number of scenarios of the choice parameters. However, such an objective

function is difficult to handle, as one can show that there may be no constant-markup-style solutions

that are optimal, and the problem optimization is not convex under formulations where the decision

variables are the purchase probabilities.

Literature review: The GEV family includes most of the parametric discrete choice models

available in the demand modeling and operations research literatures. The simplest and most

popular member is the MNL (McFadden 1978, 1980) and it is well-known that the MNL model

retains the independence from irrelevant alternatives (IIA) property, which does not hold in many

contexts. There are a number of GEV models that allows to relax this property and provide

flexibility in modeling the correlation between alternatives, for example, the nested logit model

(Ben-Akiva et al. 1985, Ben-Akiva 1973), the cross-nested logit (Vovsha and Bekhor 1998), the

generalized nested logit (Wen and Koppelman 2001), the paired combinatorial logit (Koppelman

and Wen 2000), the ordered generalized extreme value (Small 1987), the specialized compound

generalized extreme value models (Bhat 1998, Whelan et al. 2002) and network-based GEV (Daly

and Bierlaire 2006, Mai et al. 2017) models. Fosgerau et al. (2013) show that the cross-nested logit

model and its generalized version (i.e. network-based GEV) are fully flexible in the sense that they

can approximate arbitrarily close any random utility maximization model. Beside the GEV family,

it is worth noting that the mixed logit model (McFadden and Train 2000) is also popular due to its

flexibility in capturing utility correlation. There is a fundamental trade-off between the flexibility
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and the generality of the choice models and the complexity of their estimation andapplication in

operational problems. For the case of GEV models, even being flexible in modeling choice behavior,

the resulting operational problems (e.g., product assortment or pricing) are often nonlinear and

non-convex, leading to difficulties solving them in practice.

There is a large amount of research on unconstrained pricing under different discrete choice

models. For example, Hopp and Xu (2005) and Dong et al. (2009) consider the pricing problem

under the MNL model, Li and Huh (2011) consider the the nested logit model, Li et al. (2015)

consider the pricing problem under the paired combinatorial logit model, and Zhang et al. (2018)

consider the pricing problem under any choice model in the GEV family. Under the assumption that

the PSP are the same over product, these authors show that the prices have a constant markup with

respect to the product costs and provide formulas to explicitly computed this constant markup.

There are some studies trying to get over the assumption that the PSP are homogeneous over

products. Li and Huh (2011) study the pricing problem under the nested logit model and assume

that the PSP are homogeneous only in each nest and can be different over nests. They then show

that the PSP in each nest have a constant markup. Zhang et al. (2018) generalize these results by

considering the pricing problem under GEV models, in which the CPGF is partition-wise separable

and the PSP are assumed to be homogeneous in each partition. The authors also show that, in

this case, the optimal prices have a constant markup in each partition.

The literature has also seen studies considering the pricing problem with arbitrary PSP. Gallego

and Hu (2014) show that the the pricing optimization problem unde the nested logit model can

have multiple local optimal solutions if the PSP are arbitrarily heterogeneous and provide sufficient

conditions to ensureunimodality of the expected revenue function. Li et al. (2015), Huh and Li

(2015) consider the pricing problem under the d-nested and paired combinatorial logit models

and also provide sufficient conditions on the PSP to ensure unimodality of the expected revenue

function.

The constrained pricing problem where the prices are required to lie in a feasible set is difficult to

solve as the expected revenue function is nonlinear and non-concave in the prices. Motivated by the

applications with inventory considerations (Gallego and Van Ryzin 1997) and the observation that

the expected revenue function is concave in the purchase probabilities, researchers have consider the

pricing problem with constraints on the expected sales. For example, Song and Xue (2007), Zhang

and Lu (2013) consider the pricing problem under the MNL model and show that the expected

revenue is concave in the purchase probabilities if the PSP are homogeneous. Keller (2013) consider

the pricing problem under the MNL and nested logit models and show that the expected revenue

function is concave in the purchase probabilities under the MNL and arbitrary PSP, and establish

sufficient conditions on the PSP to ensure that the expected revenue under the nested logit model
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is concave. Zhang et al. (2018) also generalizes all these results by showing that, under any GEV

model, if the PSP are homogeneous or partition-wise homogeneous, then the expected revenue is

concave in purchasing probabilities, making the pricing problem with expected sale constraints

tractable.

All above studies assume that the parameters of the choice model is given in advance and

ignore any uncertainty associated with such parameters in the pricing problem. However, the choice

parameters typically need to be inferred from data and uncertainties may occur. In this work,

we explicitly take into consider this issue by considering robust versions of the unconstrained and

constrained pricing problems, with homogeneous and partition-wise homogeneous PSP. Our results

directly generalize the results for deterministic pricing from Zhang et al. (2018), which already

covers most of the the pricing optimization studies in the literature.

Our work is concerned with robust solutions for the pricing problem under uncertainty, so it is

directly related to the concept of robust optimization, an important research area in operations

research which has received a growing attention over the past two decades. Robust optimiza-

tion is motivated by the fact that many real-world decision problems arising in engineering and

management science have uncertain parameters due to limited data or noisy measurements. The

literature on robust optimization includes a larger number of excellent studies (see Ben-Tal and

Nemirovski 1998, 2000, Ben-Tal et al. 2006, for instance). Most of the studies in the literature of

robust optimization focus on linear, piece-wise linear or convex objective functions. In our context,

the expected revenue is nonlinear and non-convex/non-concave in the prices, implying that exist-

ing robust optimization results do not apply (except the part where we consider the constrained

pricing problem under uncertain expected-sale constraints in Section A), and making our robust

problem challenging to solve in a tractable way. It is worth noting that our work is relevant to Rus-

mevichientong and Topaloglu (2012) where the authors consider robust versions of the assortment

planing problem. The decision variables in their work are discrete (i.e., a set of assortment) and the

authors were able to obtain some nice results, e.g., they show that if the problem is unconstrained,

then a revenue-ordered assortment is optimal to their robust problem.

Paper outline: We organize the paper as follows. In Section 2, we present the deterministic

pricing problem under GEV models and recall some results from Zhang et al. (2018). In Section

3, we present our results for the robust unconstrained pricing problem under homogeneous and

partition-wise homogeneous PSP. In Sections 4, we study the pricing optimization formulation with

over-expected-sale penalties and its robust version. In Section 5 we provide some experimental

results and in Section 6 we conclude. In the Appendix, we provide discussions onrobust constrained

problems, some detailed proofs and numerical results.
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Notation: Boldface characters represent matrices (or vectors), and ai denotes the i-th element of

vector a. We use [m], for any m∈N, to denote the set {1, . . . ,m}. For any vector b with all equal

elements, we use 〈b〉 to denote the value of one element of the vector. Given two vectors of the

same size a,b∈Rm, a� b is equivalent to a−b∈Rm+ , and a� b is equivalent to b� a.

2. Deterministic Pricing under Generalized Extreme Value Models

We denote by V = {1, . . . ,m} the set of m available products. There is a non-purchase item indexed

by 0, so the set of all possible products is V ∪ {0}. We also denote by xi and ci the price and the

cost of product i, respectively. The random utility maximization (RUM) framework (McFadden

1978) is the most popular approach to model discrete choice behavior. Under this framework, each

product i∈ V is assigned with a random utility Ui and the additive RUM framework (Fosgerau et al.

2013, McFadden 1978) assumes that each random utility can be expressed as a sum of two part

Ui = ui + εi, where the term ui is deterministic and can include values representing characteristics

of the product, and the term εi is unknown to the analyst. The RUM principle then assume that the

selections are made by maximizing these utilities and the probability that an product i (including

the non-purchase item) is selected can be computed as P (Ui ≥Uj, ∀j ∈ V ∪{0}).

In our context, we are interested in the effect of the prices on the expected revenue. So we assume

that the deterministic terms ui, ∀i ∈ V, can be expressed as ui = ai − bixi, where bi is the PSP

associated with product i and ai can include other information that may affect customer’s demand

such as the brand, size or color of the items. These values can be obtained by fitting the choice

model with observation data. As mentioned above, the estimation process may cause uncertainties

associated with such estimates. Note that here we assume that the utilities ui depend linearly on the

prices, which is a popular assumption in most of the existing pricing studies. Nonlinear formulation

would make the pricing problem much more difficult to deal with, but would be interesting to look

at in future research.

A GEV model can be represented by a CPGF G(Y), where Y is a vector of size m with entries

Yi = eui , for all i∈ V. To be consistent with the RUM principle, G(·) needs to satisfy the following

properties (McFadden 1978, Ben-Akiva et al. 1985).

Remark 1 (Properties of GEV-CPGF). A GEV-CPGF G(Y) has the following properties.

(i) G(Y)≥ 0, ∀Y∈Rm,

(ii) G is homogeneous of degree one, i.e., G(λY) = λG(Y)

(iii) G(Y)→∞ if Yi→∞

(iv) Given i1, . . . , ik distinct from each other, ∂Gi1,...,ik(Y)≥ 0 if k is odd, and ≤ if k is even

(v) G(Y) =
∑

i∈V Yi∂Gi(Y)

(vi)
∑

j∈V Yj∂Gij(Y) = 0, ∀i∈ V.
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where ∂Gi(Y) = ∂G(Y)/∂Yi

Under a GEV model specified by CPGF G, given any vector Y ∈ Rm, the choice probability of

product i∈ V is given by

Pi(Y|G) =
Yi∂Gi(Y)

1 +G(Y)
.

Note that the above formulation also implies that the choice probability of the non-purchase item

is P0(Y|G) = 1/(1+G(Y)). The GEV becomes the MNL model if G(Y) =
∑m

i=1 Yi, and it becomes

the nested logit model if G(Y) =
∑

n∈N

(∑
i∈Cn(σinYi)

µn
)µ/µn

, where N is the set of nests, Cn is

the set of items in nest n and σin, µ > 0, µn > 0 are the parameters of the nested logit model. In

the generalized version of the nested logit model proposed by Daly and Bierlaire (2006), called

the network GEV, the corresponding CPGF can be computed recursively based on a rooted and

cycle-free graph representing the correlation structure of the items.

Under a GEV model specified by a CPGF G(·), the deterministic version of the pricing problem

is stated as

max
x∈Rm

R(x) =
m∑
i=1

(xi− ci)Pi(Y(x,a,b)|G), (P1)

where Y(x,a,b)∈Rm with entries Yi(x,a,b) = exp(ai−bixi). The expected revenue R(x) becomes

more difficult to handle as the GEV model becomes more complicated. By leveraging the properties

of GEV models stated in Remark 1, Zhang et al. (2018) manage to show that if the PSP are

homogeneous, i.e., bi = bj for all i, j ∈ V and if x∗ is an optimal solution to (P1), then

x∗i − ci =
1

〈b〉
+R(x∗),∀i∈ V and R(x∗) =

W (γe−1)

〈b〉
(1)

where γ =G(Y1(c1), . . . , Ym(cm)) and W (·) is the Lambert-W function. The results in (1) indeed

imply that a constant markup solution is optimal to (P1) and this constant markup can be com-

puted explicitly. Moreover, if the PSP are partition-wise homogeneous and G is separable, then

Zhang et al. (2018) show that the optimal prices have a constant markup in each partition. These

results also provide an explicit way to compute optimal prices for the pricing problem under the

MNL with arbitrary PSP. Zhang et al. (2018) also show that the expected revenue function is

concave in the purchasing probabilities under any GEV model, making the pricing problem with

expected sale constraints tractable.

3. Robust Unconstrained Pricing

In this section, we study a robust version of the unconstrained pricing problem, under the setting

that the choice parameters (a,b) are not given exactly but belong to an uncertainty set. We first

present our results for the case of homogeneous PSP. We then switch to the case of partition-

wise PSP later on. In our robust model, we aim at maximizing the worst-case expected revenue
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over all parameters in the uncertainty set. The robust unconstrained pricing problem (P1) can be

formulated as

max
x∈Rm

{
g(x) = min

(a,b)∈A

m∑
i=1

(xi− ci)Pi(Y(x,a,b)|G),

}
, (RO)

where A is the uncertainty set of the parameters (a,b). We also assume that A is compact, convex

and bounded (Assumption 1). The convexity and compactness assumptions are useful later in the

section, as we need to show that, under a constant-markup style vector of prices, the objective

function of the adversary’s problem is convex on A, which in turn helps to identify a saddle

point of the robust problem. The boundedness assumption is rational in the context, as the choice

parameters are often inferred from data and it is expected that they are finite. We also assume

that the PSP are positive, i.e., b > 0, which is rational from a behavior point of view.

Assumption 1. A is convex, compact and bounded, i.e., there exists (a,b) and (a,b) in R2m such

that (a,b)� (a,b)� (a,b), ∀(a,b)∈A. Moreover, assume that b� 0 and b 6= 0.

3.1. Homogeneous Price Sensitivity Parameters

When the PSP are the same over all the products, we will show that the robust optimal prices have

a constant markup and this constant markup can be computed efficiently by binary search. To

prove the results, we will consider the robust unconstrained pricing problem with constant-markup

prices, i.e., we only look at prices x such that xi− ci = xj − cj for all i, j ∈A. Then we show that

there exist constant-markup prices x∗ such that if (a∗,b∗) is an optimal solution to the adversary’s

problem under prices x∗, then x∗ is also optimal to the deterministic unconstrained problem with

choice parameters (a∗,b∗). In this context, (x∗,a∗,b∗) is a saddle point of the robust problem and

we show that x∗ is also an optimal solution to the robust problem.

Given constant-markup prices x ∈ Rm and choice parameters (a,b) ∈ A, the expected revenue

becomes
m∑
i=1

(xi− ci)Pi(Y(x,a,b)|G) =
z
∑

i∈V Yi∂Gi(Y)

1 +G(Y)

= z

(
1− 1

1 +G(Y)

)
,

where z = xi− ci, ∀i ∈ V and Y is a vector with entries Yi = exp(ai− bi(z+ ci)) for all i ∈ V. As a

result, the expected revenue is a function of z and (a,b), and if (a∗(z),a∗(z)) is an optimal solution

to the adversary’s problem, then we also have

(a∗(z),b∗(z)) = argmin
a,b∈A

G(Y|z,a,b), (2)

where G(Y|z,a,b) = G(Y1, . . . , Ym) with Yi = eai−bi(z+ci). First, we show that, given z ≥ 0,

G(Y|z,a,b) is strictly convex in (a,b) and (a∗(z),b∗(z)) is always uniquely determined (Proposi-

tion 1).
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Proposition 1. Under Assumption 1, given any z ∈R+, G(Y|z,a,b) is strictly convex on A and

Problem 2 always has a unique solution.

Proof: First, we consider function fG(s) :Rm→R+

fG(s) =G(Y1, . . . , Ym), where Yi = esi , ∀i∈ V

We will prove that fG(s) is convex. Taking the first and second derivatives of fG(s) we obtain

∂fG(s)

∂si
= ∂Gi(Y)Yi,

and
∂2fG(s)

∂si∂si
= ∂Gii(Y)Y 2

i + ∂Gi(Y)Yi,

∂2fG(s)

∂si∂sj
= ∂Gij(Y)YiYj.

So we have

∇2fG(s) = diag(Y)∇2G(Y)diag(Y) + diag(∇G(Y) ◦Y),

where diag(Y) is the square diagonal matrix with the elements of vector Y on the main diagonal.

The second term diag(∇G(Y) ◦Y) is always positive definite. Moreover, diag(Y)∇2G(Y)diag(Y)

is symmetric and its (i, j)-th component is given by Yi∂Gij(Y)Yj. For i 6= j, we have ∂Gij(Y)≤

0 by the property of the GEV-CPGF G, so all off-diagonal entries of the matrix are non-

positive. In addition,
∑

j∈V Yj∂Gij(Y) = 0, so that each row of the matrix sums to zero. Thus,

diag(Y)∇2G(Y)diag(Y) is positive semi-definite (see Theorem A.6 in De Klerk 2006). So, ∇2fG(s)

is positive definite, or equivalently, fG(s) is strictly convex in s. This lead to the following inequality,

for all s1, s2 ∈Rm and λ∈ (0,1)

λfG(s1) +λfG(s2)> fG(λs1 + (1−λ)s2).

For all (a1,b1), (a2,b2)∈A, replace s1i by a1i − b1i (z+ ci) and s2i by a2i − b2i (z+ ci) we have

λG(Y|z,a1,b1) +λG(Y|z,a2,b2)>G(Y|z,λa1 + (1−λ)a2, λb1 + (1−λ)b2), ∀λ∈ (0,1)

which means that G(Y|z,a,b) is strictly convex in a,b. This completes the proof. �

Next, we further show that (a∗(z),b∗(z)) determined in (2) are not only unique given any z ≥ 0,

but also are continuous in z (Lemma 1).

Lemma 1. (a∗(z),b∗(z)) determined in (2) is continuous in z ∈R+.

Proof: This is a direct result from Proposition 1, i.e., (a∗(z),b∗(z) are uniquely determined, and

the Corollary 8.2 of Hogan (1973). �
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In the next lemma, we show that, given any z ∈ R+, if the uncertainty set A is bounded, the

the function G(Y|z,a,b) is also bounded for all parameters (a,b) ∈ A. The lemma allows us to

determine an finite interval where we can search the robust optimal constant markup.

Lemma 2. Under Assumption 1 we have

G(Y|z,a,b)≤G(Y|z,a,b)≤G(Y|z,a,b), ∀z ∈R+, (a,b)∈A.

Proof: Again, consider fG(s) =G(Y1, . . . , Ym), where Yi = esi , ∀i= 1, . . . ,m. Taking the derivative

of fG(s) w.r.t. si we have

∂fG(s)

∂si
= ∂Gi(Y)Yi ≥ 0

So, fG(s) is monotonic in every coordinate, meaning that given any s, s0 ∈ Rm, s � s0, we have

fG(s)≥ fG(s0). Moreover, it is clear from Assumption 1 that

a−b ◦ (c+ ze)� a−b ◦ (c+ ze)� a−b ◦ (c+ ze), ∀z ∈R+, (a,b)∈A.

So, we obtain the following inequality

G(Y|z,a,b)≤G(Y|z,a,b)≤G(Y|z,a,b), ∀(a,b)∈A,

which completes the proof. �

Proposition 2 below is a key result of this section where we show that there is a constant

markup z∗ such that if we solve the corresponding adversary’s problem under z∗ and obtain a

solution (a∗(z),b∗(z)), then z∗ is also the optimal constant markup for the deterministic pricing

problem under parameters (a∗(z),b∗(z)). In other words, we show that there exist z∗ ∈ R+ such

that (z∗+ c,a∗(z),b∗(z)) is a saddle point of the robust problem.

Proposition 2. For any i∈ V, there exists z∗ ∈R+ such that

z∗ =
1 +W (τ(z∗))

〈b∗(z∗)〉
∈
[
Z0,Z

0
]

where

Z0 =
1 +W (G(Y|0,a,b)e−1)

〈b〉

Z
0

=
1 +W (G(Y|0,a,b)e−1)

〈b〉
τ(z∗) =G(Y|0,a∗(z∗),b∗(z∗))e−1

and W (·) is the is the Lambert-W function.
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Proof: Let

f(z) = z− 1 +W (τ(z))

〈b∗(z)〉
.

From Lemma 2, we have the following chain of inequalities

Z0 ≤ 1 +W (τ(z))

〈b∗(z)〉
≤Z0

, ∀z ∈R+.

Which means

f(Z0)≤ 0; f(Z
0
)≥ 0

Since f(z) is continuous in z (Lemma 1), equation f(z) = 0 always has a solution in the interval[
Z0,Z

0
]
. �

In Proposition 2, we make use of the boundedness assumption on A to identify an interval

where we can find z∗. Without this assumption, one can simply choose 0 as a lower bound, as

f(0) is always less than 0. However, to identify an upper bound, one needs some limits from the

uncertainty set. This is because even in the deterministic case, if the choice parameters b approach

zero, or a increase to infinity, then the optimal constant markup will go to infinity (see Equation

1 for details).

We are now ready to establish the main result of the section. Theorem 1 below shows that the

robust optimal prices have a constant markup and it provides a formula to compute this constant

markup by binary search. The proof of the theorem is quite obvious, as we already show that there

isa saddle point of the robust problem that has the constant-markup style (Lemma 2).

Theorem 1. (Constant markup is optimal to the robust problem when the PSP are

homogeneous). Assume that Assumption 1 holds and the PSP are homogeneous, i.e., for any

(a,b) ∈ A, bi = bj, ∀i, j = 1, . . . ,m, then xRO∗ defined below is the unique optimal solution of the

robust problem (RO)

xRO∗
i = zRO∗+ ci, ∀i= 1, . . . ,m (3)

where zRO∗ ∈R+ is the unique value of z satisfying

z =
1 +W (G(Y|0,a∗(z),b∗(z))e−1)

〈b∗(z)〉
, (4)

where W (·) is the Lambert-W function.

Proof: To prove that xRO∗ is optimal to the robust problem, we will show that g(xRO∗)≥ g(x) for

all x∈Rm. Let us first define

Φ(x,a,b) =
m∑
i=1

(xi− ci)Pi(Y(x,a,b)|G) (5)
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Given xRO∗ and zRO∗ defined in (3) and (4), we first remark that (a∗(zRO∗),b∗(zRO∗)) is also the

unique solution of the adversary’s problem

argmin
(a,b)∈A

Φ(xRO∗,a,b)

So, g(xRO∗) = Φ(xRO∗,a∗(zRO∗),b∗(zRO∗)). Using the results from Zhang et al. (2018) and according

to the way xRO∗ is computed, xRO∗ is optimal to the following problem

max
x∈Rm

Φ(x,a∗(zRO∗),b∗(zRO∗)).

This leads to the following inequalities, for any x∈Rm,

g(xRO∗) = Φ(xRO∗,a∗(zRO∗),b∗(zRO∗))

≥Φ(x,a∗(zRO∗),b∗(zRO∗)) (6)

≥ min
(a,b)∈A

Φ(x,a,b)

= g(x).

So, g(xRO∗)≥ g(x) for all x∈Rm, i.e., xRO∗ is an optimal solution to the robust problem.

Note that the deterministic version of the unconstrained pricing problem always has a unique

solution, which is the constant markup one (Zhang et al. 2018). So, the inequality in (6) is strict

if x 6= xRO∗. In other words, g(xRO∗)> g(x) if x 6= xRO∗, meaning that there is only one solution to

the robust pricing problem (RO) and there is only solution to the equation (4), as required. �

Theorem 1 implies that a solution to the robust problem can be found by solving the equation

1 +W (G(Y|0,a∗(z),b∗(z))e−1)
〈b∗(z)〉

− z = 0, (7)

in the interval
[
Z0,Z

0
]
, in which Z0,Z

0
are defined in Lemma 2. This could be done efficiently via

binary search. In comparison with its deterministic counter part, the robust problem would requires

about log2

(
(Z

0−Z0)
)
/ε) steps to obtain a constant markup that is in the ε-neighbourhood of

the optimal constant markup, while the deterministic problem requires one step to get its optimal

solution.

Theorem 1 also allows us to give comparative statistics that describe how the robust optimal

value and the optimal prices change as a function of the size of the uncertainty set. To facilitate

our exposition, let us denote by Γ(A) the optimal value of the robust problem (RO) andby x∗(A)

the robust constant markup given by Theorem 1. We also need the following definition and lemma

to establish the comparative results.
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Definition 1. An uncertainty set A is called “separated-by-price-sensitivity-parameters”

if A is a Cartesian product of two uncertainty sets of a and b, i.e., A= {(a,b)| a ∈Aa ⊂Rm,b ∈

Ab ⊂Rm+}.

Lemma 3. Assume that the PSP are homogeneous, given an uncertainty set A, satisfying Assump-

tion 1 and the “ separated-by-price-sensitivity-parameters”

Property 1. , then the set A can be represented as A = Aa × Ab where Ab = {b|bi = bj ∈

[b, b],∀i, j ∈ [m]}, where b, b∈R+, and x∗(A)i = ci + 1/b+ Γ(A).

Proof: Since the PSP are homogeneous and the uncertainty sets are compact, there always exists

b, b ∈ R+, b ≤ b such that Ab = {b|bi = bj ∈ [b, b]}. Moreover, from Theorem 1, the robust opti-

mal prices x∗(A) is constant markup, i.e., ∃z∗ ∈ R+ such that x∗(A)i − ci = z∗. Let (a∗,b∗) =

argmin(a,b)∈AG(Y|z∗,a,b). Using the result that fG(s) = G(ee1 , . . . , eem) is monotonic in every

coordinate of s ∈ Rm (Lemma 2) and (a∗,b∗) is always uniquely determined (Proposition 1), we

can show that b∗i = b, for all i∈ [m]. So, from Theorem 1 and Proposition 3.2 of Zhang et al. (2018)

we obtain

x∗(A)i− ci = z∗ =
1

b
+
W (G(Y|0,a∗,b∗)e−1)

b

=
1

b
+ Γ(A), ∀i∈ [m],

which is the desired result. �

In the next proposition, we show that if the uncertainty set becomes larger, then we obtain

smaller robust expected value and the robust prices decreases as well.

Proposition 3. (Larger uncertainty set leads to smaller robust expected revenue and

smaller robust optimal prices). If the PSP are homogeneous, then given two convex uncertainty

sets A1,A2 satisfying Assumption 1 such that A1 ⊂A2, we have Γ(A1)≥ Γ(A2). Moreover, if A1

and A2 are “ separated-by-price-sensitivity-parameters”, then x∗(A1)� x∗(A2).

Proof: For notational convenience, we denote the objective value of the adversary as g(x|A) =

min(a,b)∈A
∑

i(xi− ci)Pi(Y(x,a,b)|G). It is obvious that g(x|A1)≥ g(x|A2) for any x∈Rm+ , so we

have

g(x∗(A2)|A2)≤ g(x∗(A2)|A1)≤ g(x∗(A1)|A1),

which means Γ(A1)≥ Γ(A2), as required.

Now, assume that the uncertainty sets A1 and A2 are “separated-by-price-sensitivity-

parameters”. Using Lemma 3, we can write A1 =Aa
1×Ab

1 where Ab
1 = {b|bi = bj ∈ [b1, b1], ∀i, j},
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and A2 =Aa
2 ×Ab

2 where Ab
2 = {b|bi = bj ∈ [b2, b2], ∀i, j}, where b1, b1, b2, b2 are non-negative con-

stants such that b1 ≤ b1 and b2 ≤ b2. From Theorem 1 we can write

x∗(A1)i = ci +
1

b1
+ Γ(A1), ∀i∈ [m]

x∗(A2)i = ci +
1

b2
+ Γ(A2), ∀i∈ [m].

Moreover, since A1 ⊂A2, we have b1 ≤ b2. Using the result Γ(A1)≥ Γ(A2) we have x∗(A1)� x∗(A2),

which completes the proof. �

The proof of Proposition 3 contains more information than the proposition itself, as we we can

write x∗(A1)i−x∗(A2)i = 1

b1
− 1

b2
+Γ(A1)−Γ(A2)≥ 1

b1
− 1

b2
, which indicates that if we increase the

upper bound of the PSP in the uncertainty set, the robust optimal prices will strictly decrease.

3.2. Partially Heterogeneous Price Sensitivity Parameters

In this section, we try to relax the assumption that the PSP are homogeneous. Similar to the

deterministic version considered in Zhang et al. (2018), we need additional assumptions to derive

solutions to the robust problem. More precisely, we require that the products can be partitioned

into disjoint subsets, the generating function is separable by the partitions, and the products in

each partition share the same price sensitivity parameter. We partition the set of all products V
into N non-empty subsets V1, . . . ,VN such that V =

⋃N

n=1 Vn and Vi ∩ Vj = ∅, ∀i 6= j, i, j ∈ [N ].

Moreover, we separate the vector Y into sub-vectors Y1, . . . ,YN such that Yn = {Yi| i ∈ Vn} for

all n ∈ [N ]. We also separate vector (a,b) ∈ R2m
+ into sub-vectors (a1,b1), . . . , (aN ,bN) such that

(an,bn) = {(ai, bi)| i∈ Vn}, ∀n∈ [N ]. Let denote by An ⊂A the uncertainty set for the sub-vector

(an,bn), for any n∈ [N ]. We further assume that the GEV-CPGF G(Y) can be separated into N

GEV-CPGFs as

G(Y) =
N∑
n=1

Gn(Yn).

In this context, we need to further assume that the uncertainty set is rectangular, because of

the following reason. When the PSP is not homogeneous, the optimal prices to the deterministic

pricing problem do not have a single constant markup over all products (Zhang et al. 2018). As a

consequence, the robust optimal prices to (RO) would generally not have a single constant markup

over all the products. Moreover, if the prices do not have constant-markup style as in the previous

section, the corresponding adversary’s problem would be non-concave in (a,b) and solutions to

the adversary’s problem may be not unique. For this reason, we can not apply the techniques

used in the previous version to identify a saddle point of the the robust problem. Furthermore,

in Proposition 5 below, we show that under a general uncertainty set, a partition-wise constant-

markup solution would be optimal to the robust problem, but such a solution may not exist or

may not be tractable to obtain.
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Assumption 2. The PSP are homogeneous in each subset Vn, n∈ [N ], and the uncertainty set A

is rectangular, i.e., A=
{

(a,b)| a∈ [a,a], b∈ [b,b], bi = bj, ∀i, j ∈ Vn, ∀n
}
.

To deal with the robust problem in this context, we first consider the problem where we only seek

prices that have a constant markup in each partition, i.e., x ∈ Rm such that xi − ci = xj − cj for

all i, j ∈ Vn, n ∈ [N ]. Similar to the previous section, we will show that there is a solution x∗ of

this style such that if (a∗,b∗) is an optimal solution to the adversary’s problem under prices x∗,

then (x∗,a,b) is a saddle point of the robust problem and x∗ is a robust optimal solution. In this

context, Assumption 2 allows us to characterize solutions of the adversary’s problem under the

robust optimal prices. In brief, we show in the following that if the uncertainty set is rectangular,

then under any prices that have a constant markup in each partition, there is an adversary solution

whose each coordinate is equal to either its upper bound or its lower bound. Then, we show

that if the vector of prices is optimal to the robust problem, then there is an solution to the

corresponding adversary’s problem (a∗,b∗) such that a∗ is equal to its lower bound and b∗ is

equal to its upper bound, which is nice because it allows us to convert the robust problem into an

equivalent deterministic one.

Consider a robust pricing problem, in which we require the prices x to have a constant markup

in each partition, i.e., xi − ci = xj − cj for all i, j ∈ Vn, n ∈ [N ]. Let zn = xi − ci for all i ∈ Vn and

n∈ [N ]. The robust problem becomes

max
z∈RN

 min
(a,b)∈A

∑
n∈[N ]

∑
i∈Vn

znPi(Y
n(zn + c,a,b)|Gn)

 ,

or equivalently

max
z∈RN

{
min

(a,b)∈A

∑
n∈[N ] znG

n(Yn|zn,a,b)

1 +
∑

n∈[N ]G
n(Yn|zn,a,b)

}
, (8)

where Gn(Yn|z,a,b) =Gn(Yi, i ∈ Vn) with Yi = eai−bi(zn+ci), for all i ∈ Vn. For notational brevity,

let

ρ(z,a,b) =

∑
n∈[N ] znG

n(Yn|zn,a,b)

1 +
∑

n∈[N ]G
n(Yn|zn,a,b)

.

In Lemma 4 below, we show that if we aim at maximizing function Gn(Y n|zn,an,bn), for any

n ∈ [N ], over the uncertainty set A, then we can pick the upper bound vector of an and lower

bound vector of bn. On the other hand, if the goal is to minimize Gn(Y n|zn,an,bn), we can just

take the lower bound vector of an and upper bound vector of bn. The role of this lemma is to

support the following lemma where we show that if (a∗,b∗) is optimal to the adversary problem,

then each coordinate of (a∗,b∗) is equal to either its upper bound or its lower bound.
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Lemma 4. Assume that Assumption 2 holds, given any n ∈ [N ], if (an∗,bn∗) is a solution to the

maximization problem max(an,bn)∈AnG
n(Yn|z,an,bn), then an∗ = an and bn∗ = bn. On the other

hand, if (an∗,bn∗) is a solution to minimization problem min(an,bn)∈AnG
n(Yn|z,an,bn), then an∗ =

an and bn∗ = b
n
, where an,an,b

n
,an are sub-vectors of a,a,b,b, respectively.

Proof: Using the same technique as in the proof of Lemma 2, we can show that function fGn(s) =

Gn(Yn(s)), where Yi(s) = esi , ∀i ∈ Vn, is a monotonically increasing function in every coordinate.

Since An is rectangular and Gn(Yn|z,an,bn) = Gn(Yi = eai−bi(z+ci)| i ∈ Vn), we easily have the

following result

Gn(Yn|z,an,bn)≥Gn(Yn|z,an,bn), ∀(an,bn)∈An,

Or, equivalently,

(an,bn) = argmax(an,bn)∈AnG
n(Yn|z,an,bn) (9)

Moreover, from Proposition 1, we know that Gn(Yn|z,an,bn) is strictly convex in An, mean-

ing that (an,bn) is the unique solution of the maximization problem in (9). By a simi-

lar way, we can also show that (an,b
n
) is the unique solution to the minimization problem

min(an,bn)∈AnG
n(Yn|z,an,bn). This completes the proof. �

Lemma 5 below shows that under any prices, one of the vector in {(a,b)∈A| ai ∈ {ai, ai}, bi ∈

{bi, bi}} is optimal to the adversary’s problem, which also means that we can solve the adversary

problem by searching over 2m+n possible solutions. This lemma is an important step towards the

result showing that under the robust optimal prices, vector (a,b) is optimal to the adversary’s

problem.

Lemma 5. Assume that Assumption 2 holds and let (a∗,b∗) be a solution to the corresponding

adversary’s problem of (8), then for any n∈ [N ], we have

(a∗i , b
∗
i ) =

{
(ai, bi) if ρ(z,a∗,b∗)< zn
(ai, bi) if ρ(z,a∗,b∗)> zn

∀i∈ Vn.

Moreover, if ρ(z,a∗,b∗) = zn then all the solutions in the following set are optimal to the adversary’s

problem

S∗ = {(a,b)∈A| (aj, bj) = (a∗j , b
∗
j ),∀j /∈ Vn}

Proof: We denote (an∗,bn∗) as the sub-vectors of (a∗,b∗) associated with partition n-th, i.e.,

(an∗,bn∗) = {(a∗i , b∗i ), i∈ Vn}. Now, given any n∈ [N ], let

A=
∑

n′∈[N ],n′ 6=n

znG
n(Yn|zn,a∗,b∗)

B = 1 +
∑

n′∈[N ],n′ 6=n

Gn(Yn|zn,a∗,b∗).
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We can write

ρ(z,a∗,b∗) =
A+ znG

n(Yn|zn,a∗,b∗)
B+Gn(Yn|zn,a∗,b∗)

We now prove the lemma by considering the following three cases:

(i) If ρ(z,a∗,b∗) < zn, then for any γ < Gn(Yn|zn,a∗,b∗) one can easily show the following

inequality

ρ(z,a∗,b∗) =
A+ znG

n(Yn|zn,a∗,b∗)
B+Gn(Yn|zn,a∗,b∗)

>
A+ znγ

B+ γ

Since (a∗,b∗) is a solution to the adversary problem (8),(an∗,bn∗) must be a solution to the

minimization problem min(an,bn)∈AnG
n(Yn|zn,an,bn). According to Lemma 4, we have (a∗i , b

∗
i ) =

(ai, bi) for all i∈ Vn.

(ii) If ρ(z,a∗,b∗) > zn, then similarly to the previous case, we can show that, for any γ >

Gn(Yn|zn,a∗,b∗) one can easily show the following inequality

ρ(z,a∗,b∗)>
A+ znγ

B+ γ
.

Thus, (an∗,bn∗) must be a solution to the maximization problem max(an,bn)∈AnG
n(Yn|zn,an,bn).

Again, using Lemma 4, we have (a∗i , b
∗
i ) = (ai, bi) for all i∈ Vn.

(iii) If ρ(z,a∗,b∗) = zn, then for any γ ∈R we have

ρ(z,a∗,b∗) =
A+ znγ

B+ γ
,

meaning that any solution (a,b) ∈ A such that (ai, bi) = (a∗i , b
∗
i ), for all i 6= Vn, is optimal to the

adversary problem (8).

Combining the above three cases, we obtain the desired result. �

Since we want to prove that under robust optimal prices z∗, the solution (a,b) should be optimal

to the adversary’s problem, Lemma 5 tells us that we need to show ρ(z∗,a,b)≤ z∗n for all n∈ [N ].

Before presenting this result, we need the following lemma.

Lemma 6. Given z∈RN , (a,b)∈A and k ∈ [N ], if ρ(z,a,b)≥ zk, then

∂ρ(z,a,b)

∂zk

∣∣∣∣
z=z

> 0.

Proof: For notational brevity, let A =
∑

n∈[N ] znG
n(Yn|zn,a,b) and B = 1 +∑

n∈[N ]G
n(Yn|zn,a,b). Taking the first derivative of ρ(z,a,b) w.r.t. zk we obtain

∂ρ(z,a,b)

∂zk

∣∣∣∣
z=z

=

(
Gk(zk,a,b)− zk

∑
i∈Vk

biYi∂G
k
i (Y

k)
)
B+A

(∑
i∈Vk

biYi∂G
k
i (Y

k)
)

B2

=
1

B2

(
Gk(zk,a,b) +

(∑
i∈Vk

biYi∂G
k
i (Y

k)

)
(A− zkB)

)
> 0.

The last inequality is due to ρ(z,a,b) =A/B ≥ zk. �
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We are now ready to show that (a,b) is an optimal solution to the adversary’s problem under

the robust optimal prices (Lemma 7).

Lemma 7. Under Assumption 2, (a,b) is the unique optimal solution to the adversary’s problem

of (8) under robust optimal prices.

Proof: Let z∗ be an optimal solution to (8), we first prove that (a,b) is optimal to the adversary’s

problem under z∗. Let A∗ be the set of optimal solutions to the adversary’s problem of (8) under

z∗, i.e.,

A∗ = argmin
(a,b)∈A

ρ(z∗,a,b).

Let also f(z) = argmin(a,b)∈A ρ(z,a,b). We will prove that f(z∗)< z∗n for all n ∈ [N ]. By contra-

diction, assume that there exists a set n∈ [N ] such that ρ(x∗,a∗,b∗)≥ z∗n. Let

k= argmax{z∗n| n∈ [N ], f(z∗)> z∗n}

h= argmin{z∗n| n∈ [N ], f(z∗)< z∗n}.

Indeed, h always exists because ρ(z∗,a∗,b∗)<maxn∈[N ] z
∗
n. We consider two following cases

(i) If such k exists. We have z∗h > ρ(z∗,a∗,b∗)> z∗k and for any n 6= h and n 6= k we have either

ρ(z∗,a∗,b∗) = z∗n or z∗k ≥ z∗n or z∗h ≤ z∗n. Moreover, the function f(z) is continuous in x (Theorem 7,

Hogan 1973). So, there is δ > 0 such that

z∗h > f(z∗+ tek)> z∗k + t, ∀t∈ [0, δ],

where ek is a vector of size N with zero entries except the k-th element is equal to 1. As a result,

for any n∈ [N ] such that z∗n ≥ z∗h we have z∗n > f(z∗+ tek) and if z∗n ≤ z∗k we have z∗n < f(z∗+ tek).

From Lemma (5), this means that there is a solution (a∗,b∗)∈A∗ that is optimal to the adversary’s

problem {argmin(a,b)∈Aρ(z∗+ tek,a,b)}, for all t∈ [0, δ]. This leads to

f(z∗+ tek) = ρ(z∗+ tek,a∗,b∗)≤ ρ(z∗,a∗,b∗), ∀t∈ [0, δ],

which is contradictory to the result of Lemma 6, which says that the partial derivative of

ρ(z∗,a∗,b∗) is positive.

(ii) If such k does not exist, we also have that for any n∈ [N ], either f(z∗)< z∗h ≤ z∗n or f(z∗) = z∗n.

Similar to the previous case, we also have the result that there exists δ > 0 such that z∗h > f(a∗+tek)

for all t ∈ (0, δ), which also leads to the result that there is (a∗,b∗) ∈ A∗ being optimal to the

adversary’s problem under z∗ + tek. Using Lemma 6, there is t ∈ (0, δ] such that ρ(z∗,a∗,b∗) <

ρ(z∗+ tek,a∗,b∗) = f(z∗+ tek), which is contradictory to our initial assumption that a∗ is optimal

to the robust problem.
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So in summary, we can claim that f(z∗)< z∗n, for all n ∈ [N ] and Lemma 5 tells us that (a,b) is

the unique optimal solution to the adversary’s problem of (8), which is the desired result. �

Lemma 8. The robust problem (8) is equivalent to maxz ρ(z,a,b).

Proof: We use the same notations as in the proof of Lemma 7. We need to prove that if z∗ is an

robust optimal solution to (8), then it is also optimal to maxz ρ(z,a,b). To facilitate our exposition,

let A= {(a,b)| ai ∈ {ai, ai} and bi ∈ {bi, bi}} (i.e. A contains points whose each coordinate is either

equal to its lower bound or upper bound). We also define

τ = min
(a,b)∈A

{
ρ(z∗,a,b)− ρ(z∗,a,b)

∣∣∣ ρ(z∗,a,b)>ρ(z∗,a,b)
}

(10)

Now, by contradiction, assume that z∗ /∈maxz ρ(z,a,b). since the problem maxz ρ(z,a,b) has a

unique local optimum (Theorem C.1 in Zhang et al. (2018)), ∇zρ(z∗,a,b) 6= 0. Thus, there always

exits a vector εεε∈Rn 6= 0 and a constant δ > 0 such that

ρ(z∗,a,b)<ρ(z∗+ tεεε,a,b),∀t∈ (0, δ). (11)

Moreover, since f(z) and ρ(z,a,b) are continuous in z (Theorem 7, Hogan 1973), we can choose

t∈ (0, δ) such that {
|f(z∗)− f(z∗+ tεεε)|< τ/2
|ρ(z∗,at,bt)− ρ(z∗+ tεεε,at,bt)|< τ/2

(12)

where (at,bt) is an optimal solution to the adversary’s problem under prices z∗+ tεεε. From Lemma

5 we can choose (at,bt)∈A. By the selection of t in (12) we have

|ρ(z∗,a,b)− ρ(z∗,at,bt)| ≤ |ρ(z∗,a− ρ(z∗+ tεεε,at,bt)|+ |ρ(z∗+ tεεε,at,bt)− ρ(z∗,at,bt)|< τ.

Combine with the definition of τ in (10), we have that (at,bt) is also an optimal solution to the

adversary’s problem under z∗. Lemma 5 tells us that (a,b) is the unique optimal solution to the

adversary’s problem under z∗, so we have (at,bt) = (a,b). Combine with (11) we have f(z∗) <

f(z∗+ tεεε), which is contradictory to the assumption that z∗ is optimal to the robust problem (8).

This completes the proof. �

Now we are ready for the main result. The following theorem shows that there is a partition-wise

constant markup solution that is optimal to the robust problem (RO). This is a direct outcome

from Lemmas 7 and (8).

Theorem 2. (If the PSP are partition-wise homogeneous, a partition-wise constant

markup solution is optimal). Assume that Assumption 2 holds and let R∗ be the unique solution

of the equation

R=
∑
n∈[N ]

1

〈bn〉
e−〈b

n〉R−1Gn(Yn|0,a,b)
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then x∗ ∈Rm such that x∗i = ci + 1/〈bn〉+R∗, ∀i∈ Vn, ∀n∈ [N ], is the unique optimal solution to

the robust problem (RO).

Proof: According to Theorem C.1 of Zhang et al. (2018) we see that x∗ is also an optimal solution

the problem maxx Φ(x,a,b). Moreover, if we define z∗ ∈ RN such that z∗n = x∗i − ci for all n ∈

[N ], i∈ Vn, then z∗ is also optimal to the problem maxz ρ(z,a,b). Hence, z∗ is also a robust optimal

solution to (8) (Lemma 8). As a result, from Lemma 7 we see that (a,b) is an optimal solution

to the adversary’s problem of (RO) under prices x∗. So, we have g(x∗) = Φ(x∗,a,b) (recall that

g(x) is the adversary’s optimal objective value under prices x ∈Rm). Under the assumption that

the PSP are homogeneous in each partition Vn, Zhang et al. (2018) (Theorem C.1) show that x∗

is also optimal to the deterministic problem

max
x∈Rm

Φ(x,a,b).

So, for any x∈Rm, we have

g(x∗) = Φ(x∗,a,b)≥Φ(x,a,b)

≥ min
(a,b)∈A

Φ(x,a,b) = g(x).

So, g(x∗) ≥ g(x) for all x ∈ Rm. Moreover, if x 6= x∗, then from Zhang et al. (2018) we have

Φ(x∗,a,b) > Φ(x,a,b), which means g(x∗) > g(x). So, x∗ is the unique optimal solution to the

robust problem, as required. �

Theorem 2 indicates that to solve the robust problem under a rectangular uncertainty set and

partition-wise PSP, we just need to pick (a,b) for the choice parameters and solve the corresponding

deterministic pricing problem. Thus, the robust problem in this context is not difficult to solve as

compared to the deterministic counterpart.

In the next two corollaries, we provide formulas to compute the robust optimal prices for the

case of the MNL and nested logit models. These formulas are a direct result from Theorem 2 and

generalize previous studies on the pricing problem under the MNL and nested logit models (Keller

2013, Li and Huh 2011).

Corollary 1. (Robust solutions for the MNL-based robust pricing problem with het-

erogeneous price sensitivity parameters). If the choice model is MNL, the PSP are heteroge-

neous over products and the uncertainty set is rectangular, i.e., A= {(a,b)| a ∈ [a,a], b ∈ [b,b]},

then x∗ defined below is an optimal solution to the robust problem (RO): x∗i = ci +
1
/
bi +R∗, where

R∗ is a unique value of R satisfying R=
∑

n∈[N ]
1

bi
exp(ai− bi(ci +R)− 1).
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If the choice model is a nested-logit model of N nests with GEV-CPGF function

G(Y) =
N∑
n=1

(∑
i∈Vn

σinY
µn
i

)µ/µn
, (13)

where µ,µn > 0, σin, ∀n∈ [N ], i∈ Vn, are some model parameters.

Corollary 2. (Robust solutions for the robust pricing problem under nested-logit when

the PSP are partially heterogeneous). If the choice model is a nested-logit with GEV-CPGF

(13), the PSP are homogeneous in each nest and the uncertainty set is rectangular, i.e., A =

{(a,b)| a ∈ [a,a], b ∈ [b,b]}, then x∗ defined below is an optimal solution to the robust problem

(RO): x∗i = ci + 1/〈bn〉+R∗,∀i∈ Vn, n= 1, . . . ,N, where R∗ is a unique value of R satisfying

R=
∑
n∈[N ]

1

〈bn〉

(∑
i∈Vn

σine
(ai−〈b

n〉ci)µn

)µ/µn
e−〈b

n〉R−1.

We also give some comparative insights that describe how the robust optimal value and solution

change as a function of the uncertainty set. To facilitate the comparison, let x̃
∗
(A) denote the

robust solution given in Theorem 2, the following theorem shows that, in case that the PSP are

partition-wise homogeneous, a larger uncertainty set leads to smaller robust prices.

Proposition 4. (When the PSP are partition-wise homogeneous, larger uncertainty set

leads to smaller robust optimal prices). Given two convex uncertainty set A1,A2 satisfying

Assumption 2, if A1 ⊂A2, then Γ(A1)≥ Γ(A2) and x̃
∗
(A1)� x̃

∗
(A2).

Proof: Similarly to the proof of Theorem 3, the inequality Γ(A1) ≥ Γ(A2) is easy to verify. To

prove the inequality associated with the optimal prices, we write A1 = {(a,b)| a ∈ [a1,a1], b ∈

[b1,b
1
]} and A2 = {(a,b)| a ∈ [a2,a2], b ∈ [b2,b

2
]}. For each partition n ∈ [N ], let b

1,n
and b

2,n

be the corresponding sub-vectors of b
1

and b
2
, respectively. Using the results from Theorem 2 and

Theorem C.1 of Zhang et al. (2018), we can show that, for any partition n∈ [N ],

x̃
∗
(A1)i = ci +

1

〈b1,n〉
+ Γ(A1), ∀i∈ Vn

x̃
∗
(A2)i = ci +

1

〈b2,n〉
+ Γ(A2), ∀i∈ Vn.

Moreover, since A1 ⊂A2, we have 〈b1,n〉 ≤ 〈b2,n〉. Using the inequality Γ(A1)≥ Γ(A2), we obtain

the desired result x̃
∗
(A1)� x̃

∗
(A2) �

The proof of Proposition 4 also tells us that x̃
∗
(A1)i − x̃

∗
(A2)i ≥ 1/〈b1,n〉 − 1/〈b2,n〉, meaning

that the robust price of each item will strictly decrease if we increase the upper bound of its PSP

in the uncertainty set.
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In Proposition 5 below, we try to relax Assumption 2, i.e., the rectangularity of the uncertainty

set. In general, if the uncertainty set is not rectangular, we are able to show that there might be

a vector of partition-wise constant markup prices being optimal to the robust problem. However,

such a vector might not exist due to the fact that the adversary’s problem is no-longer convex.

Proposition 5. If there exist z∗ ∈RN , a∗,b∗ ∈Rm, and R∗ ∈R+ such that

(a∗,b∗) = argmax(a,b)∈Aρ(z∗,a,b) (14)

R∗ =
∑
n∈[N ]

1

〈bn∗〉
e−〈b

n∗〉R∗−1Gn(Yn|0,a∗,b∗) (15)

z∗i =
1

〈bn∗〉
+R∗, ∀i∈ Vn, n∈ [N ], (16)

then vector x∗ = c+ z∗ is an optimal solution to the robust problem (8).

Proof: Using Theorem C.1 in Zhang et al. (2018), we see that x∗ is an optimal solution to the

deterministic problem maxx∈Rm ρ(x,a∗,b∗). Thus, we have the following chain of inequalities for

any price vector x∈Rm

g(x∗) = ρ(z∗,a∗,b∗)

≥ ρ(x− c,a∗,b∗)

≥ min
(a,b)∈A

ρ(x− c,a,b)

= g(x),

which implies that x∗ is optimal to the robust problem (8), as desired. �

Proposition 5 suggests that we might solve the robust problem in (8) under a general uncertainty

set by solving the system of equations (14)-(16). However, this is not computational tractable, as

the function ρ(z∗,a,b) in (14) is not convex in (a,b) under the heterogeneity setting, even when

the choice model is MNL. Note that when there is only one partition (the PSP are homogeneous),

Proposition 5 becomes Theorem 1. In this context, the function ρ(z∗,a,b) is strictly convex in

(a,b) and there always exist z∗,a∗,b∗ satisfying (14)-(16). Furthermore, if the uncertainty set A is

rectangular (Assumption 2), then we have shown that (a∗,b∗) can be determined under the optimal

constant markups z∗, and Proposition 5 becomes Theorem 2. In the case that the uncertainty set

is singleton, the proposition becomes Theorem C.1 in Zhang et al. (2018).

4. Robust Pricing with Over-expected-sale Penalties

Motivated by applications in inventory considerations (Gallego and Hu 2014), we are interested

in a robust model for the pricing problem with expected sale requirements under uncertain choice

parameters (a,b). Given the fact that there may be no fixed prices such that the corresponding
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expected sale constraints are always satisfied when the choice parameters vary in the uncertainty

set, (see Appendix A), we propose the version with over-expected-sale penalties, which allows us

to handle both the expected sale requirements and the uncertainty issue. Our idea is to put the

expected sale constraints to the objective function, i.e., we do not force the purchase probabilities to

be in a feasible set, but instead we add penalties for purchase probabilities violating the constraints.

More precisely, we consider the objective function Φ(x,a,b)−
∑T

t=1 λtmax{0, (αααt)Tp− rt}, where

λt ≥ 0, t= 1, . . . , T , are penalty parameters. In this objective function, if a constraint is violated,

i.e., (αααt)Tp> rt, then a cost −λtmax{0, (αααt)Tp− rt} is added to the expected revenue. In general,

if we choose λt large enough, we will need a vector of purchase probabilities satisfying all the

expected sale constraints to obtain high objective values. The deterministic pricing problem under

the above objective function is

max
x∈Rm

{
Φ(x,a,b)−

T∑
t=1

λtmax{0, (αααt)Tp− rt}

}
, (17)

which can be formulated as the convex optimization problem

max
p,y

∑
i∈V

(x(p|a,b,G)i− ci)pi−
T∑
t=1

λtyt (18)

subject to (αααt)Tp− yt ≤ rt∑
i∈V

pi ≤ 1

p,y≥ 0.

Before moving to a robust version, we investigate some characteristics of the deterministic pricing

problem with penalties (18). First, let us denote by v∗ and p∗ the optimal value and optimal solution

of the standard pricing problem under expected sale constraints (28) and vλλλ and pλλλ the optimal

value and optimal solution to the pricing problem with over-expected-sale penalties (18). Theorem

3 below shows that the expected value given by (18) will converges to the optimal expected revenue

given by the constrained pricing problem (28) when λt, ∀t∈ [T ], increase to infinity.

Theorem 3. For any ε > 0, we have

(i) For any λλλ1,λλλ2 ∈RT+ such that λλλ1−λλλ2 = ε1,∑
t

max{0, (αααt)Tpλλλ
1

− rt} ≤
∑
t

max{0, (αααt)Tpλλλ
2

− rt},

where 1 is a unit vector of appropriate size.

(ii) vλλλ ≥ v∗ for all λλλ∈RT+ and if λ0 = mint∈[T ] λt ≥ (∆∗−v∗)/ε then
∑

tmax{0, (αααt)Tpλλλ−rt} ≤ ε,

where ∆∗ = maxx Φ(x,a,b).
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(iii) Assume that there are positive constant Li, li, i ∈ V such that Yi∂Gi(Y) is bounded from

above by LiY
li
i for all prices x≥ 0, then for any ε such that

ε≤min
t,i
{αti| αti > 0}min

t

{
rt

(αααt)T1

}
,

then if we choose λ0 ≥ (∆∗− v∗)/ε, we can upper-bound |vλλλ− v∗| as

|vλλλ− v∗| ≤max

{
max
i

{
ai
bi
− 1

bili
log

δ(ε)

Li

}
,0

}
mε

mint,i{αti| αti > 0}
,

where δ(ε) = mint

{
rt

(αααt)T1

}
− ε

mint,i{αti| α
t
i>0} , and this upper bound converges to zero linearly when

ε tends to zero.

The proof of Theorem 3 can be found in Appendix C. It is not difficult to validate that the assump-

tion in Theorem 3–(iii) holds for all the well-known GEV models in the literatures. For examples, for

the MNL, Yi∂Gi(Y) = Yi. For a nested logit mode specified by G(Y) =
∑

n∈N

(∑
i∈Cn σinY

µn
i

)1/µn
,

where N is the set of nests, Cn is the corresponding nest and µ,µn are some parameters, we

have Yi∂Gi(Y) = Y µn
i

(∑
j∈Cn σjnY

µn
j

)1/µn−1
. If µn > 1 then Yi∂Gi(Y)≤ σ1/µn−1

in Yi and if µn < 1

then Yi∂Gi(Y ) ≤ LnY µn
i , where Ln is an upper bound of

(∑
j∈Cn σjnY

µn
j

)1/µn−1
for all x ∈ Rmi ,

which always exists. For a more general GEV model, we note that ∂Gij(Y)≤ 0 and Yj ≥ 0 for all

i, j ∈ V, i 6= j. As a result, we have ∂Gi(Y)≤ ∂Gi(Ỹ
i
), where Ỹ

i
is a vector of size m with entries

Ỹ i
i = Yi and Ỹ i

j = 0 for all j 6= i. Thus,∂Gi(Ỹ
i
) is a function of only Yi. For a more complicated

GEV model such as the network GEV model (Daly and Bierlaire 2006), we can easily upper-bound

Yi∂Gi(Ỹ
i
) by a function of form LiY

li
i , where Li, li > 0.

In Theorem 3, the first result (i) indicates that the penalty term
∑T

t=1 max{0, (αααt)Tp− rt} is

monotonically decreasing as a function of λλλ. As a result, this term will converges to a non-negative

constant when λλλ increases. The second statement (ii) tells us explicitly that the penalty term will

converge to zero when the parameters λλλ are large enough. It also provides an estimate for mint{λt}

to get arbitrarily small penalty costs. The third result (iii) provides an upper-bound for the gap

between the optimal expected revenues given by the constrained pricing problem and the pricing

problem with over-expected-sale penalties, and this upper bound converges to zero linearly when

ε goes to zero. So in general, Problem 17 can be viewed as a generalized version of the constrained

pricing problem in (28), in the sense that if we select the penalty parameters λλλ large enough, then

we will get a solution that is similar to the one from the constrained problem, and if we set λλλ= 0

then we come back to the unconstrained problem. Thus, the formulation in (18) provides a more

flexible way to handle expected sale requirements.

Theorem 3 also allows us to answer the question whether an optimal solution to (17) has the

constant-markup style. In general, we can show that a solution to (17) does not have a constant
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markup over products if the PSP are all homogeneous, or has a constant markup in each partition

if the PSP are partition-wise homogeneous and the CPGF is partition-wise separable (Corollary

3, the proof is given in Appendix B). For this reason, the results presented in this section are not

a generalized version of those shown in Sections 3 and 3.2 when the penalty parameters λλλ equals

zero.

Corollary 3. A solution to the unconstrained pricing problem with penalties (17) does not have a

constant-markup style.

Since we consider the pricing problem with over-expected-sale penalties, we do not face the issue of

violating the expected sale constraints when the choice parameters vary in the uncertainty set.We

consider the robust version of (17) under (a,b) uncertainty

max
x∈Rm

min
(a,b)∈A

{
Φ(x,a,b)−

T∑
t=1

λtmax{0, (αααt)Tp− rt}

}
(19)

The adversarial problem of (19) is still difficult to solve as the objective function is not convex on

A. Surprisingly, in Theorem 4 below, we show that if under the robust optimal prices, an optimal

solution to the adversary problem can be identified, then it allows us to convert the robust problem

into a deterministic pricing problem with expected-sale-penalties. To obtain this result, we need

to assume that the uncertainty set is rectangular and the reason is similar to the case of not-

homogeneous PSP in Section 3.2. To avoid overly complicated proofs, we will first provide results for

the MNL model, then we will show results for a general GEV model with additional assumptions in

the next proposition. Theorem 4 shows results for the pricing problem with over-expected-penalties

under the MNL model.

Theorem 4. (A tractable solution for MNL-based robust pricing with over-expected-

sale penalties and rectangular uncertainty sets). If the choice model is MNL and the uncer-

tainty set A is rectangular, i.e., A= {(a,b)| (a,b)� (a,b)� (a, b)}, then the robust problem (19)

is equivalent to

v∗ = max
x

{
Φ(x,a,b)−

T∑
t=1

λtmax{0, (αααt)Tp(x,a,b)− rt}

}
,

and the maximization problem can be formulated as a convex optimization one.

For notational convenience, let

L(x,a,b) = Φ(x,a,b)−
T∑
t=1

λtmax{0, (αααt)Tp− rt}, and f(x) = max
x∈Rm

L(x,a,b).

We will also use the set A{(a,b)| ai ∈ {ai, ai}, bi ∈ {bi, bi}}, which is already defined in the proof

of Lemma 8. In general, the robust problem in (19) is challenging to handle because of the term
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t=1 λtmax{0, (αααt)Tp−rt}, which makes the objective function no-longer differentiable in x. How-

ever, the good thing here is that if we consider the subset T ∈ [T ] such that the constraints are

violated only in T , we can write the objective function as

L(x,a,b) = Φ(x,a,b)−
∑
t∈T

λt(ααα
t)Tp+

∑
t∈T

λtrt

=
∑
i∈V

(xi−
∑
t∈T

λtααα
t
i− ci)pi(x,a,b) +

∑
t∈T

λtrt (20)

and note that
∑

i∈V(xi−
∑

t∈T λtααα
t
i − ci)pi(x,a,b) is also the expected revenue with shifted item

costs
∑

t∈T λtααα
t
i + ci, ∀i∈ V. We will leverage this observation to prove the theorem.

In Lemma 9 below, we show that given any prices x ∈Rm, one of the solutions in the set A is

optimal to the adversary’s problem. This result is similar to the unconstrained case with partition-

wise PSP considered in Section 3.2.

Lemma 9. Given any x ∈ Rm, there is at least one solution (a,b) ∈ A that is optimal to the

corresponding adversary’s problem of (19).

Proof: Given x ∈ Rm, let (ax,bx) be optimal to the adversary problem. We also denote by T a

subset of [T ] such that (αααt)Tp(x,ax,bx)≥ rt for all t ∈ T and (αααt)Tp(x,ax,bx)< rt if t /∈ T . The

robust optimal value at x becomes

f(x) =
∑
i

(xi− ci)pi(x,ax,bx)−
∑
t∈T

λt(ααα
t)Tp(x,ax,bx) +

∑
t∈T

λtrt

=

∑
i

(
xi− ci−

∑
t∈T λtα

t
i

)
Y x
i

1 +
∑

i Y
x
i

+
∑
t∈T

λtrt,

where Y x
i = exp(axi − bxi xi). For notational brevity, let

ρx =

∑
i

(
xi− ci−

∑
t∈T λtα

t
i

)
Y x
i

1 +
∑

i Y
x
i

I1 = {i∈ V| ρx <xi− ci−
∑
t∈T

λtα
t
i}

I2 = {i∈ V| ρx >xi− ci−
∑
t∈T

λtα
t
i}

Ax = {(a,b)∈A| (ai, bi) = (ai, bi) if i∈ I1, (ai, bi) = (ai, bi) if i∈ I2}

From Lemma 5, if (ax,bx) /∈Ax then for any (a,b)∈Ax we have

f(x)>
∑
i

(xi− ci)pi(x,a,b)−
∑
t∈T

λt(ααα
t)Tp(x,a,b) +

∑
t∈T

λtrt

≥Φ(x,a,b)−
T∑
t=1

λtmax{0, (αααt)Tp(x,a,b)− rt},
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which is contradictory to the assumption that (ax,bx) is optimal to the adversary’s problem. So

we have (ax,bx)∈Ax. On the other hand, Lemma 5 tells us that if we take any point (a,b)∈Ax

such that (a,b)∈A we also have

f(x) =
∑
i

(
xi− ci−

∑
t∈T

λtα
t
i

)
pi(x,a,b) +

∑
t∈T

λtrt

≥
∑
i

(xi− ci)pi(x,a,b)−
T∑
t=1

λtmax{0, (αααt)Tp(x,a,b)− rt}=L(x,a,b).

Since f(x) = min(a,b)∈AL(x,a,b), we have f(x) =L(x,a,b), meaning that (a,b) is also optimal to

the adversary’s problem under prices x. This completes the proof. �

The lemma above tells us that a solution in which each coordinate is at a bound of the uncertainty

set is optimal to the adversary’s problem, given any prices. This allows us to reduce the searching

of the space for the adversary’s problem from an infinite to a finite set, which is helpful. The

number of elements in A is still huge (22m). The next lemma characterizes an important property

of the robust optimal prices, which allows us to further reduce the adversary’s searching space into

a singleton set, which greatly simplifies the robust problem. Let x∗ be a robust optimal solution

to the robust problem and (a∗,b∗) be an optimal solution to the adversary problem such that

(a∗,b∗) ∈ A, i.e., (a∗,b∗) are at the bounds of the the uncertainty set. We also denote by T ∗ a

subset of [T ] such that (αααt)Tp(x∗,a∗,b∗) ≥ rt for all t ∈ T ∗ and (αααt)Tp(x∗,a∗,b∗) < rt if t /∈ T ∗,
and let

ρ∗ =

∑
i

(
x∗i − ci−

∑
t∈T ∗ λtα

t
i

)
Y ∗i

1 +
∑

i Y
∗
i

, where Y ∗i = exp(a∗i − b∗ix∗i ).

Lemma 10. ρ∗ <x∗i − ci−
∑

t∈T ∗ λtα
t
i, for all i∈ V.

Proof: By contradiction, assume that there exits k ∈ V such that ρ∗ ≥ x∗k− ck−
∑

t∈T ∗ λtα
t
k. Let

δ= min
(a,b)∈A

{
L(x∗,a,b)−L(x∗,a∗,b∗)

∣∣∣ L(x∗,a,b)>L(x∗,a∗,b∗)
}
, (21)

with a note that we set δ = +∞ if the corresponding searching set is empty. Using Lemma 9 we

can choose (a∗,b∗) such that (a∗k, b
∗
k) = (ak, bk). So, if we select ε > 0 such that ε < (ak−ak)/bk then

a∗k− εbk ≥ ak, meaning that (a∗− εb∗kek,b
∗)∈A and we have the following claim

L(x∗,a∗,b∗)≤L(x∗,a∗− εb∗kek,b
∗)

= (x∗i − ci)pi(x∗,a∗− εb∗kek,b
∗)−

T∑
t=1

λtmax{0, (αααt)Tp(x∗,a∗− εb∗kek,b
∗)− rt}

= (x∗i − ci)pi(x∗+ εek,a∗,b∗)−
T∑
t=1

λtmax{0, (αααt)Tp(x∗+ εek,a∗,b∗)− rt}

<L(x∗+ εek,a∗,b∗).



Mai T. and Jaillet P.: Robust Multi-product Pricing under General Extreme Value Models
Article submitted; manuscript no. (Please, provide the manuscript number!) 29

Moreover, combining with the fact that L(x,a∗,b∗) and f(x) are continuous in x, we always can

select ε > 0 small enough such that

L(x,a∗,b∗)<L(x+ εek,a∗,b∗) (22)

|f(x∗)− f(x∗+ εek)|< δ/2 (23)∣∣∣L(x∗+ εek,aε,bε)−L(x∗,aε,bε)
∣∣∣< δ/2, (24)

where (aε,bε) is an optimal solution to the adversary’s problem under prices x+ εek. Using (23)

and (24) we have

|f(x∗)−L(x∗,aε,bε)| ≤ |f(x∗)− f(x∗+ εek)|+ |f(x∗+ εek)−L(x∗,aε,bε)|< δ.

So, according to the definition of δ in (21), we have f(x∗) =L(x∗,aε,bε), which means that (aε,bε)

is also an optimal solution to the adversary’s problem under prices x∗. So, we always can choose

an optimal solution (a∗,b∗) in the set of optimal solutions of the adversary’s problem under x∗

such that (a∗,b∗) = (aε,bε). Together with (22), we have

f(x∗) =L(x∗,a∗,b∗)<L(x∗+ εek,a∗,b∗) = f(x∗+ εek),

which is contradictory to our initial assumption that x∗ is a robust optimal solution. So our

contradiction hypothesis is untrue and this completes the proof. �

We are now ready for the proof of Theorem 4.

Proof of Theorem 4. From Lemma 9 and 10, we have that if x∗ is a robust optimal solution, then

(a,b) is the unique optimal solution to the adversary’s problem under robust optimal prices x∗.

We need to prove that x∗ is also optimal to the maximization problem maxxL(x,a,b). In this case,

the function L(x,a,b) is not differentiable in x, so we cannot use the techniques in the proof of

Lemma 8. Fortunately, if we consider the objective function L(x,a,b) as a function of the purchase

probabilities p, then it is strictly concave in p. To facilitate this point, lets us define

F(p,a,b) =L(x,a,b) = (x(p|a,b)− c)
T
p−

T∑
t=1

λtmax{0, (αααt)Tp− rt}

We know that the first term (x(p|a,b)− c)
T
p is strictly concave in p (Zhang et al. 2018) and it

is not difficult to show that −
∑T

t=1 λtmax{0, (αααt)Tp− rt} is concave in p. As a result, F(p,a,b)

is strictly concave in p. Now, let p∗ be the purchase probabilities given by prices x∗ and choice

parameters (a,b). We will prove that p∗ = argmaxpK(p,a,b). By contradiction, assume that p̃ =

argmaxpK(p,a,b) and K(p̃,a,b)>K(p∗,a,b). Since K(p,a,b) is strictly concave in p, we have,

for any t∈ (0,1),

tK(p̃,a,b) + (1− t)K(p∗,a,b)<K(tp̃+ (1− t)p∗,a,b)
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Since K(p̃,a,b) ≥ K(tp̃ + (1− t)p∗,a,b), we have K(p∗,a,b) < K(tp̃ + (1− t)p∗,a,b) for all t ∈
(0,1). This also mean that for any ε > 0, we always can find a point p> 0,

∑
i pi < 1, such that

||p∗−p|| ≤ ε and K(p∗,a,b)<K(p,a,b). Since p(x,a,b) is continuous in x, this also means that

given any ε > 0, there always exists x∈Rm such that ||x−x∗|| ≤ ε and L(x∗,a,b)<L(x,a,b).

Now, similarly to the proof of Lemma 8, let

τ = min
(a,b)∈A

{
L(x∗,a,b)−L(x∗,a,b)

∣∣∣ L(x∗,a,b)>L(x∗,a,b)
}

(25)

Since f(x) and L(x,a,b) are continuous in z, there is an ε > 0 such that, for all x∈Rm, ||x∗−x|| ≤ ε{
|f(x∗)− f(x)|< τ/2
|L(x∗,ax,bx)−L(x,ax,bx)|< τ/2,

(26)

where (ax,bx) is an optimal solution to the adversary’s problem (19) under prices x. As a result,

for all x such that ||x∗−x|| ≤ ε

|L(x∗,a,b)−L(x∗,ax,bx)|< τ.

Combine this with (25) we have, for all x such that ||x∗ − x|| ≤ ε, (ax,bx) is optimal to the

adversary’s problem under prices x∗. Since (a,b) is the unique solution to the adversary’s problem

under prices x∗, we have (ax,bx) = (a,b). Moreover, we have shown that given any ε > 0, there

exists x such that ||x−x∗|| ≤ ε and L(x,a,b)> L(x∗,a,b). If we choose ε small enough, (a,b) is

also optimal to the adversary’s problem under x, which leads to f(x)> f(x∗). This is contradictory

to the fact that x∗ is a robust optimal solution. So, our contradiction hypothesis that p∗ is not

optimal to maxpK(p,a,b) is untrue, meaning that p∗ is optimal to maxpK(p,a,b), or equivalently,

x∗ is optimal to maxxL(x,a,b). We obtain the desired results. �

It is important to note that (a,b) is not necessary an adversary’s optimal solution under any

price vector x. To illustrate this observation, we simply select λλλ= 0 and a price vector x in such

a way that there is i ∈ V such that xi = ci. So, we have f(x) > xi − ci. Lemma 5 tells us that if

(ax,bx) is optimal to the adversary’s problem under prices x, then (ai, bi) = (ai, bi), meaning that

(a,b) is not optimal to the adversary’s problem. So, basically, to solve the adversary’s problem

under any price solution, one might need to go through all possible solutions in A or use a nonlinear

optimization solver, which is not computationally tractable.

An interesting question here is how the robust optimal value and optimal solution change when

the penalty parameters λλλ increase. To answer this, let ϕλλλ be the optimal value of the robust

problem in (19) under penalty parameters λ, ϕ be the optimal value of the constrained problem

with parameters (a,b), xλλλ is an robust solution to (19) and pλλλ is the purchase probabilities given

by the robust solution xλλλ in the worst-case. The following corollary is a direct result from Theorem

3 and 4, noting that in the case of the MNL model, Li, li (defined in Theorem 3) are equal to 1 for

all i∈ V.
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Corollary 4. (Convergence of the robust optimal values when the penalty parame-

ters λλλ increase). Assume that choice model is MNL and the uncertainty set is rectangular (A=

{(a,b)| (a,b)� (a,b)� (a, b)}). Given any ε > 0, if we select λλλ such that mint λt ≥ (∆∗−ϕ)/ε then∑
tmax{0, (αααt)Tpλλλ− rt} ≤ ε, where ∆∗ = maxx Φ(x,a,b). Moreover, if we select ε such that

ε≤min
t,i
{αti| αti > 0}min

t

{
rt

(αααt)T1

}
,

then ϕλλλ−ϕ can be bounded as

0≤ϕλλλ−ϕ≤max

{
max
i

{
ai
bi
− 1

bi
log δ(ε)

}
,0

}
mε

mint,i{αti| αti > 0}
,

where δ(ε) is defined as in Theorem 3.

We can also extend the results of Theorem 4 for robust pricing problems under GEV models, under

the assumption that the CPGF is partition-wise separable and we require that the expected sale

parameters are the same in each partition. Since the robust prices in this context would not have

the constant-markup style (Corollary 3) , i.e., robust optimal prices would not have a constant

markup in each partition. The techniques used in Section 3.2 cannot be used and we are unable to

identify robust solutions in this context. However, it we only seek constant-markup solutions, i.e.,

x∈X := {x∈Rm
+ | xi− ci = xj − cj, ∀i, j ∈ Vn, n∈ [N ]}, then the robust problem can be converted

into a convex optimization problem (Proposition 6). We refer the reader to Section 3.2 for the

definitions of Gn(·), Yn, ∀n∈ [N ].

Proposition 6. (Robust solutions for the robust pricing problem under GEV mod-

els with over-expected-sale penalties). Assume that the uncertainty set is rectangular (A=

{(a,b)| (a,b)� (a,b)� (a, b)}) and the CPGF G(Y) is partition-wise separable as defined in Sec-

tion 3.2 and αti = αtj for all i, j ∈ Vn, n∈ [N ]. If z∗ is optimal to the problem

max
z∈RN

{
H(z,a,b)) =

∑
n∈[N ] znG

n(Yn|zn,a,b)

1 +
∑

n∈[N ]G
n(Yn|zn,a,b)

−
T∑
t=1

λtmax{0, (dt)TpG− rt}

}
, (27)

where dt is a vector of size N with entries dtn = αti for all i ∈ Vn, n ∈ [N ], t ∈ [T ] and pG is of

size N with entries pGn = Gn(Yn|zn,a,b)
/(

1 +
∑

j∈[N ]G
j(Yj|zj,a,b)

)
, then x∗ ∈ Rm such that

x∗i = ci+z∗n, ∀n∈ [n], i∈ Vn is optimal to the robust problem maxx∈X min(a,b)∈AL(x,a,b). Moreover,

(27) can be reformulated as a convex optimization problem.

We provide the proof of Proposition 6 in Appendix D. This proof is done in a similar way as in the

proof of Theorem 4, where we try to show that under the robust optimal prices, (a,b) is a unique

solution to the adversary’s problem. To show that the equivalent optimization problem (40) is

convex, we convert the problem into an MNL-based problem with heterogeneous PSP, and results
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from previous studies (Zhang et al. 2018) can be used. The limitation of the Proposition 6 is that

it only returns best solutions among those that have a constant markup in each partition, and all

the expected sale penalties in each partition need to be the same. Relaxing these assumption would

make the robust problem challenging to handle (see the discussion after Corollary 3). Moreover,

we believe that Proposition 6 is still useful in some contexts, where the firm only wants to make

pricing decisions for each group of products and only impose expected sale requirements for the

whole groups instead of each single product in the groups.

5. Numerical experiments

In this section we provide experimental results to show how the robust models considered in

Sections 3 (i.e, robust unconstrained pricing with homogeneous or partition-wise homogeneous

PSP) and 4 (i.e., robust pricing with over-expected-sale penalties) protect us from choice parameter

uncertainties.

When the choice parameters are not given exactly, one can consider a deterministic approach

where the mean values of the choice parameters are employed. In this context, we know that the

pricing problem is computationally tractable (Zhang et al. 2018). Alternatively, one may look at

different possibilities of the choice parameters and define a mixed version where the market is

divided into a finite number of market segments and each segment is governed by a scenario of the

choice parameters. However, one can show that the expected revenue in this context is no longer

unimodal and the constant-markup property identified for the GEV pricing problem no-longer

holds, even if there are only two market segments (Li et al. 2018). As a result, this mixed version

is not computationally tractable.

Another baseline approach that can be used to account for parameters uncertainty is to sample

some choice parameters from the uncertainty set and use simulation to select a solution that pro-

vides best protection from worst-case scenarios. More precisely, let assume that the firm needs to

make a pricing decision while being aware that the choice parameters may vary in an uncertainty

set. In this context, the firm can sample some points from the uncertainty set and compute the

corresponding optimal prices for each selection, using the deterministic approach from Zhang et al.

(2018). Then, for each price vector, the firm can sample a sufficiently large number of vector of

choice parameters from the uncertainty set, in order to evaluate how each price vector obtained per-

forms when the choice parameters vary in the uncertainty set. This can be done by simply selecting

the solution that gives the best worst-case profit among the samples. This approach may be compu-

tationally tractable with a reasonable number of samples, but would be much more computationally

expensive than the robust and deterministic approaches. We refer to this as the sampling-based
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pricing approach. One can show that solutions given by the sampling-based approach will converge

to those from the robust counterpart when the sample sizes grow to infinity.

In these experiments, we will compare our robust models, which are computationally tractable,

against the sampling-based approach and the deterministic counterparts with mean-value choice

parameters. In the sampling-based approach, we sample points uniformly from the uncertainty set

since we do not make any assumption about the distribution of the choice parameters. One can

argue that the uniform distribution may not be the best choice in the case that the firm believes

that it has some ideas (perhaps via estimation) about the distribution of the choice parameters.

Nevertheless, estimating such a distribution is not easy in practice. A common approach in choice

modeling is to assume that the parameters follow some distributions (e.g. normal distribution)

with unknown coefficients and try to estimate these coefficients by maximum likelihood estimation

(McFadden and Train 2000). This approach, even though popular, does not guarantee that the

distribution obtained is the true distribution of the choice parameters, assuming that there exists

a true distribution. As such, the distribution of the choice parameters is typically only known

ambiguously. Distributionally robust optimization is a robust approach that is explicitly designed

to handle this ambiguity (Shapiro 2018), which we keep for future research.

A crucial decision for our robust models and the sampling-based approach is to define the uncer-

tainty set. A common approach in the robust optimization literature is to describe an uncertainty

set as an ellipsoidal set

A=
{

(a,b)
∣∣∣ ||(a,b)− (a0,b0)|| ≤ ε

}
,

where || · || is an appropriate norm, (a0,b0) is the center of the ellipsoid and can be interpreted as the

most likely parameter vector associated with the underlying deterministic counterparts, and ε∈R+

reflects an “uncertainty level” of the uncertainty set. Larger ε values provide larger uncertainty

sets, corresponding to more conservative models that may help protect well against worst-case

scenarios, but may lead to low average performance. On the other hand, smaller ε values provide

smaller uncertainty sets and would lead to less conservative robust solutions, which may perform

well in terms of average performance but would be less beneficial in protecting bad scenarios of

the choice parameters. We will show these in detail in the following sections.

An uncertainty set can be constructed by considering different possibilities of the choice param-

eter estimates. For example, there may be a setting where the firm operates in a market with Q

heterogeneous customer types, each corresponding to a vector of choice parameter (aq,bq), q ∈Q,

and the firm is uncertain about the proportion of each customer type. This suggests an idea to

construct an ellipsoidal uncertainty set as Aε =
{

(a,b)
∣∣∣ ||(a,b)− (a0,b0)|| ≤ ε

}
where (a0,b0) =

1/Q
∑

q∈[Q](aq,bq) and ε is chosen as the minimum possible value such that (aq,bq) ∈ Aε for all
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q ∈ [Q]. In our context, we choose the L-1 norm for the case of the unconstrained robust prob-

lem with homogeneous PSP, as it allows to linearize the constraints of the adversary’s problem.

In the other cases (unconstrained pricing with partition-wise homogeneous PSP or pricing with

over-expected-sale penalties), since our results require rectangular uncertainty sets, we choose the

L-infinity norm.

5.1. Unconstrained Pricing with Homogeneous PSP

In this section we work with the robust unconstrained pricing problems with homogeneous PSP

considered in Section 3.1. The goal here is to compare the robust (RO) approach against the

standard deterministic (DET) and the sampling-based (SA) approaches under two popular GEV

models in the literature, i.e., the MNL and nested logit models, when the PSP are the same over

all the products. In this context, we know that the optimal prices for all the cases (RO, DET, and

SA) have a constant markup with respect to the product costs, and this constant markup can be

computed by a closed-form formula for the DET and SA approaches and by binary search for the

RO approach.

We choose m= 50 and manually choose a vector of item costs c where ci ∈ [10,30], ∀i ∈ V, and

the mean choice parameters (a0, b0) where a0,i ∈ [7,23], ∀i ∈ V, and b0 = 0.535, noting that in this

experiment, there is only one price sensitive parameter for all the products. Given an uncertainty

level ε > 0, we define the polyhedron uncertainty A= {(a, b)| ||a−a0||1+β||b−b0||1 ≤ ε}, where ||.||1
stands for the L1 norm and β is the scale of the PSP b with respect to a. The comparison is done

as follows. For each ε, we solve the corresponding robust problem and obtain a robust solution xRO.

For the DET, we solve the deterministic model with the mean-value parameters (a0,b0) and obtain

an optimal solution xDET. For the SA approach, we sample randomly and uniformly n1 points

from the uncertainty set, and for each point compute the corresponding optimal prices, which

have a constant markup over products. For each pricing solution, we again sample randomly and

uniformly n2 = 1000 choice parameters from A, and compute and pick a pricing solution with the

largest worst-case expected revenue among the 1000 samples. We test this approach with n1 = 10

and n1 = 50 and denote the corresponding solutions as xSA10, xSA50, respectively. Larger n1 can be

chosen, but it would mean that the SA becomes way more expensive as compared to the RO and

DET approaches. For example, if we choose n1 = 100, the SA requires to solve 100 deterministic

problems and compute 105 expected revenues to obtain a pricing solution.

To evaluate the performance of the three approaches when the choice parameters vary, given

the uncertainty set defined above, we randomly and uniformly sample 1000 parameters (a,b) from

the set A, and compute the expected revenues given by xRO, xSA10, xSA50, and xDET. So, for each
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Figure 1 Comparison between revenue distributions given by two optimal price vectors given by the robust (RO)

and deterministic (DET) approaches, under the MNL choice model and different uncertainty level ε.

solution, we get a distribution of expected revenues over 1000 samples, and we draw the histograms

of the distributions obtained in Figure 1 for ε∈ {0.5,1.0,1.5}.

When ε= 0.5, the distributions given by the RO and SA50 are similar, but with larger ε we see

that the distributions given by the RO approach have higher peaks, lower variances and shorter

tails, as compared to the other approaches. In addition, the sampling-based approach (SA10 and

SA50) perform better then the DET in terms of protecting us against too low revenues. In this

aspect, the the SA50 also performs better than the SA10, especially when ε is large.

In Table 1 in Appendix E, we provide more details about the maximum, average and worst-case

values of the distributions given by the three approach. In particular, we compute the “percentile

ranks” of the RO worst-case revenues, which indicates the percentages that the expected revenues

given by the baseline approaches (DET, SA10 and SA50) are lower than the corresponding worst-

case expected revenues given by the RO. For example, for ε= 1.5, there are 19% of the revenues

given by the DET (over 1000 sampled revenues) are less than the corresponding RO worst-case

revenue (i.e. 19.8). Over ε∈ {0.5, . . . ,10}, the average percentile ranks of the RO worst-case revenues

are 34%, 27.3% and 26.1% for the DET, SA10 and SA50 approaches, respectively, which clearly

indicates gains from the use of the RO approach, especially when the uncertainty is high.

We also provide experimental results for the robust model under the nested logit model, which

was done under the same settings as for the MNL case, i.e., there are 50 items with the same mean-

value choice parameters (a0,b0) and the same item costs c. The CPGF of the nested logit model is

given as G(Y) =
∑

n∈[N ]

(∑
i∈Cn Y

µn
i

)µ/µn
, where [N ] is the set of nests and for each n∈ [N ], Cn is

the corresponding subset of the items, µ and µn, n ∈N are the positive parameters of the nested

logit model. In this experiment, we separate the whole item set into 5 nests of the same size (10

items per each nest), i.e. N = 5 and |Cn|= 10 for all n ∈ [N ]. Moreover, we select µ= 1 and µn,

n ∈N are 0.88, 0.61, 0.92, 0.95 and 1.0, respectively. The corresponding distributions are plotted

in Figure 2, which are quite similar to the case of the MNL model. We further refer the reader
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to Table 2 in Appendix E for more details about the average, maximum, worst-case revenues and

percentile ranks when ε increases, for which a similar observation as in the case of the MNL model

applies. It is interesting to note that the average percentile ranks in this case are remarkably higher

than those from the MNL case, meaning that the RO approach does a better job when the choice

model is the nested logit. In general, we also see the advantages of the RO approach in protecting

us from “bad” scenarios of the parameters (a,b).

Figure 2 Comparison between revenue distributions given by two optimal price vectors given by the robust (RO)

and deterministic (DET) approaches, under the nested logit model and different uncertainty level ε.

To further illustrate the protection of the RO approach in the worst-case scenarios, in Figure 3

we plot the worst-case revenues given by xRO, xSA10, xSA50 and xDET when ε varies from 0 to 10.

The worst-case revenues given by the DET and SA solutions decrease fast when ε increases and

become close to zero when ε ≥ 5. On the other hand, the worst-case revenues given by the RO

approach are still significant even with highest values of ε considered (ε= 10). It is also interesting

to see the the curves given by the MNL is more smooth than those from the nested logit model.

Figure 3 Worst-case expected revenues as functions of ε

In summary, the baseline approaches (DET, SA10, SA50) always give higher average and maxi-

mum revenues, but lower worst-case revenues, which clearly indicates that the RO approach does a
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better job in protecting us from worst-case situations, but also show the trade-off of being robust.

Moreover, the results in Tables 1 and 2 also tell us that if the firm cares more about the worst

cases, a large ε can be chosen to have better protection against too low expected revenues. On the

other hand, if average performance is of concern, then by choosing a small ε, one can still get a

protection from the robust solutions, but also get an average performance that is comparable to

that of the solutions by the deterministic approach. This observation is also consistent with other

robust approaches in the revenue management literature (Li and Ke 2019, Rusmevichientong and

Topaloglu 2012).

5.2. Unconstrained Pricing with Partition-wise Homogeneous PSP

In this section we provide comparison results for the case of partition-wise homogeneous PSP

considered in Section 3.2. We use the nested logit model specified above but the PSP are the same

in each nest but different across nests. Note that in this case, we only provide results for the robust

model with rectangular uncertainty sets. In this context, we know that the robust problem can

be converted equivalently into the deterministic problem with parameters (a,b). So basically, the

RO and DET approaches can be done by solving two deterministic problems, one with the choice

parameters (a,b) and one with the mean-value parameters (a0,b0). On the other hand, for the SA

approach, if we select n1 vectors of choice parameters from the uncertainty set, we need to solve

n1 deterministic problems.

For each uncertainty level ε > 0, we define an rectangular uncertainty set Aε = {(a,b)| a ∈

[a0− ε1,a0 + ε1]; b∈ [b0− ε1/β,b0 + ε1/β]}, where 1 is a unit vector of appropriate size. Vector a0

is chosen similarly as in the previous section and b0 is chosen as (0.535,0.635,0.335,0.735,0.454).

The latter selection is due to that fact that the nested logit model has 5 nests and the PSP are

the same in each nest. Here, to simplify the experiments, we only consider uncertainty sets where

the differences between the bounds and the mean values are the same over all the coordinates.

Similarly to the previous section, we first solve the deterministic problem with the mean-value

parameters (a0,b0) to obtain a solution xDET. Then, for each set Aε we solve the RO problem to

obtain a robust solution xRO (i.e., solve the deterministic pricing problem with choice parameters

(a0− ε1,b0 + ε1/β)). We also sample n1 = 10 and n1 = 50 points from Aε for the the SA approach.

To evaluate the performance of the solutions obtained, we also sample 1000 points randomly and

uniformly from Aε and compute the expected revenues given by xRO, xSA10, xSA50, and xDET. The

distributions of the expected revenue over 1000 samples with ε∈ {0.5,1.0,1.5} are plotted in Figure

4. There is nothing surprising, as similarly to the previous experiments, distributions given by xRO

have small variances, higher peaks, shorter tails and higher worst-case revenues, as compared to

those from xSA10, xSA50 and xDET. We also refer the reader to Table 3 in Appendix E for more



Mai T. and Jaillet P.: Robust Multi-product Pricing under General Extreme Value Models
38 Article submitted; manuscript no. (Please, provide the manuscript number!)

details about the average, maximum and worst-case revenues when ε increases from 0.2 to 4.0. We

also see that the RO approach always gives higher worst-case revenues but lower average revenues,

and the SA approaches also provide some protections against low revenues. However, in this case,

even-though the percentile ranks for the DET approach are still high (30.6 on average), those from

the SA50 are significantly lower (5.6 on average). In particular, we see that there are some instances

where the percentile ranks are only 3-th, which means that only 3% of the revenues are lower than

the corresponding RO worst-case revenues. Nevertheless , the average revenues given by the SA50

are remarkably higher than those from the RO, especially when ε is large. As such, the RO seems

too conservative in this case (partially homogeneous PSP with rectangular uncertainty sets), and

large ε should not be chosen.

Figure 4 Distributions of the expected revenues under over-expected-sale penalties given by xRO and xDET under

a nested logit model with partition-wise homogeneous PSP.

5.3. Pricing with Over-expected-sale Penalties

We first provide experiments to show how the constrained pricing model performs when the choice

parameters are uncertain, and how the deterministic pricing model with over-expected-sale penal-

ties works, as compared to the constrained counterpart. We take the nested logit model with

homogeneous PSP considered above. We create one expected sale constraint (i.e., T = 1) in such

a way that the optimal prices from the unconstrained problem do not satisfy the expected sale

constraint.

In the first experiment, our goal is to show how the constrained pricing model (28) performs

when the choice parameters are uncertain. To this end, we solve the deterministic problem with

the mean-value parameters (a0,b0) to obtain a solution xDET. Then, we select an uncertainty

level ε > 0 and assume that the choice parameters vary in the uncertainty set Aε = {(a,b)| a ∈

[a0− ε1,a0 + ε1]; b∈ [b0− ε1/β,b0 + ε1/β]}. We then randomly (and uniformly) sample a∈ [a0−

ε1,a0 + ε1] and b∈ [b0− ε1/β,b0 + ε1/β]. For each sample, we compute the corresponding vector
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of purchase probabilities and check whether that vector satisfies the expected sale constraints. We

also compute the penalty costs as percents of the thresholds rt, which can explain how the new

purchase probabilities violate the constraints. These percentages based on 1000 samples are plotted

in the left sub-figure of Figure 5. We see that there are about 50% of the samples for which the

purchase probabilities given by xDET violate the expected sale constraints. On the other hand, the

penalty costs increase significantly when ε increases.

Figure 5 Left figure: Percentages of times that the purchase probabilities given by xDET violate the expected

sale constraints, and penalty costs as percents of rt when ε varies. Right figure: The expected revenue

values and penalty costs given by (18) when λt vary.

To illustrate the convergence of the optimal values of the pricing problem with over-expected-

sale penalties when the penalty parameters λλλ increase, in Figure 5 we plot vλλλ, the optimal value of

the constrained pricing problem v∗, and the penalty costs max{0, (ααα1)Tp− r1} as functions of λ1,

noting that in this experiment T = 1. We see that when λ1 ≥ 0.6, the objective values vλλλ become

very close to the optimal value of the constrained pricing problem, and the penalty cost is also

close to zero. This observation is indeed in line with the claims established in Theorem 3.

Now, we move to the robust version of the pricing problem under choice parameter uncertainty.

We select m= 50 and consider a MNL-based pricing problem with one expected sale constraint.

The expected sale constraint and the mean-value parameters (a0) are the same as in the previous

experiments and the parameters b0 are chosen similarly as in the case of pricing under the nested

logit model with partition-wise homogeneous PSP. For each uncertainty level ε > 0, we define the

rectangular uncertainty set Aε = {(a,b)| a∈ [a0− ε1,a0 + ε1]; b∈ [b0− ε1/β,b0 + ε1/β]}.

Our goal here is to illustrate how the robust model with over-expected-sale penalties performs,

as compared to other baseline approaches, i.e., deterministic and sampling-based counterparts and

the deterministic constrained pricing problem. To this end, we solve the deterministic constrained

pricing problem with the mean-value parameters (a0,b0) to obtain a solution xDET-CON, solve the
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deterministic pricing problem under over-expected-sale penalties with the mean-value parameters

(a0,b0) to obtain a solution xDET-PEN. For the SA approach, we only sample n1 = 10 points from

the uncertainty set, due to the fact that the number of points n1 is also the number of convex

optimization problems to be solved, and these optimization problems, even-though computationally

tractable, are much more expensive to solve, as compared to closed-form solutions for the case of

unconstrained pricing considered in Section 3.1. As such, for each ε, we sample 10 points from

Aε and use simulation of 1000 samples to select a solution xSA10. For the RO approach, we solve

the robust problem (19) with the uncertainty set Aε to obtain a robust solution xRO. Theorem 4

tells use that for the DET-PEN, RO and DET-CON approaches, we only need to solve one convex

optimization problem, while the SA10 requires to solve 10 convex nonlinear optimization problems.

To evaluate the performance of the solutions obtained, similarly to the previous sections, we

sample randomly and uniformly 1000 points from A and compute the corresponding expected

revenues given by the four solutions xDET-CON, xDET-PEN, xSA10 and xRO. The distributions of the

profit values (the expected revenue minus the penalty cost) over 1000 choice parameter samples for

different λ and ε are plotted in Figure 6, where similar observations apply. The histograms given

by xRO have higher peaks, smaller variances, shorter tails and get tighter as ε increases. When

λ= 0.2, the histograms given by xSA10 have higher peaks, smaller variances and better worst-case

values than those from xDET-CON, xDET-PEN. This seems however not the case for λ= 0.6, especially

when λ= 0.6 and ε= 1.5, the SA10 gives remarkably low profit values as compared to the other

approach. More detailed results are provided in Table 4 in Appendix E. In general, we also see that

the RO approach always gives higher worst-case but lower average profits. The SA10 also provides

some protections against worst-case scenarios, The DET-PEN and SA10 seems to have similar

performance, which may be due to the fact that the number of samples points n1 is small. The

percentile ranks of the RO worst-case profits are small for the DET-PEN and SA10 approaches, as

compared to those reported in previous experiments, which indicates the conservativeness of the

RO approach, especially when ε is large.

We also observe that xDET-CON gives lower-value histogram when λ= 0.2 and similar histogram

when λ= 0.6, as compared to xDET-PEN, which is in line with the claims of Theorem 3 stating that

when λ increases, solution given by the pricing problem with over-expected-sale penalties converge

to solutions given by the constrained pricing problem. To further illustrate this, we fix ε= 0.5 and

increase λ from 0.1 to 0.4 and plot the corresponding histograms in Figure 7, which clearly shows

that xDET-CON always gives lower-value histograms, and these histograms become similar to those

given by xDET-PEN when λ increase.

In summary, our experiments for the three cases (robust unconstrained pricing with homogeneous

and partition-wise homogeneous PSP, and robust pricing with over-expected-sale penalties) show
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Figure 6 Distributions of the profit values under over-expected-sale penalties given by xRO, xSA10, xDET-PEN and

xDET-CON

Figure 7 Distributions of the profits given by xDET-PEN and xDET-CON when λ∈ {0.1,0.2,0.3,0.4}.

gains from our robust models in protecting us from revenues that would be too low. The histograms

given by the robust models have higher peaks, smaller variances, higher worst-case revenues, but

lower averages, as compared to their deterministic counterparts. This observation also shows the

trade-off in being robust in making pricing decisions when the choice parameters are uncertain, and

also consistent with observations from other robust studies in the revenue management literature

(Rusmevichientong and Topaloglu 2012, Li and Ke 2019).

6. Conclusion

In this paper, we have considered robust versions of the pricing problem under GEV choice models,

in which the choice parameters are not given in advance but lie in an uncertainty set. These robust

models are motivated by the fact that uncertainties may occur in the estimation procedure of the
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choice parameters. We have shown that when the problem is unconstrained and the PSP are the

same over all the products, the robust optimal prices have a constant markup with respect to the

product costs and we have shown how to efficiently compute this constant markup by binary search.

When the PSP are partition-wise homogeneous and the CPGF are also partition-wise separable,

we have shown that if the uncertainty set is rectangular, we can convert the robust problem into an

equivalent deterministic pricing problem, in which the optimal prices can be computed by explicit

formulas.

We have also considered the pricing problem with over-expected-revenue-penalties as an alter-

native to the constrained pricing problem. We have shown that, when the penalty parameters goes

to infinity, the penalty term converges to zero and the optimal value converges to the expected

revenue given by the constrained pricing problem. Since there may be no fixed prices under which

the purchase probabilities always satisfy the expected sale constraints when the choice parameters

vary, the robust version of the pricing problem under over-expected-sale penalties is more appro-

priate to use in this context, as opposed to the robust constrained version. We have shown that

if the uncertainty set is rectangular and the choice model is MNL, the robust problem can be

converted equivalently into a deterministic one that can be solve efficiently by convex optimization.

This results can be extended to robust pricing problems under GEV models under some additional

assumptions on the expected sale parameters and the feasible set of the prices. Experimental results

based on the MNL and nested logit models have shown the advantages of our robust model in

providing protection against bad-case revenues. In future research, it would be interesting to look

at distributionally robust versions of the pricing problem, which may help provide less conserva-

tive robust solutions as compared to the standard robust optimization approaches. We are also

interested in robust approaches for the joint assortment and pricing problem under GEV choice

models.
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Appendix A: Robust Constrained Pricing

Motivated by the fact that the expected profit is concave in the purchase probabilities, previous

studies (Zhang et al. 2018, Keller 2013) show that it is convenient to consider the pricing problem

with expected sale constraints. Technically speaking, given a GEV-CPGF G(Y), price vector x ∈

Rm andparameters (a,b)∈R2m, let us define the vector of purchase probabilities of products p with

entries pi = Pi(x,a,b|G). We also let x(p|a,b,G) be the denote the prices that achieve the purchase

probabilities p. The deterministic version of the constrained pricing problem can be formulated as

max
p∈P

(∑
i∈V

x(p|a,b)i− ci

)
pi. (28)

where P ∈ Rm is a convex set such that for all p ∈ P,
∑

i∈V pi ≤ 1. One the optimal purchase

probabilities p is specified, we can obtain the optimal prices x(p|a,b,G) by solving a convex opti-

mization problem. A natural robust version of the constrained pricing problem can be formulated

as

max
p∈P

{
φ(p) = min

(a,b)∈A

∑
i∈V

(x(p|a,b,G)i− ci)pi

}
. (29)

Even though it is not difficult to show (29) is computationally tractable under rectangular or some

polyhedrons uncertainty sets, the issue here is that the final decision is a price vector, not purchase

probabilities. So even if we get an optimal purchase probabilities p from the robust model, it is

not clear how to compute the corresponding optimal prices under (a,b) uncertainty. On the other

hand, one can show that given any prices x, there may be (a,b) ∈A such the resulting purchase

probability vector p = P (x,a,b|G) that does not belong to the feasible set (i.e. the expected sale

constraints are not satisfied). All these make the robust version in (29) inappropriate to use. This

is the reasonwe propose an alternative robust model in Section 4, in which instead of requiring

the purchasing probabilities to satisfy some constraints, we add a penalty cost to the objective

function.

Alternatively, in some situations the firm may face uncertainties occurring in the inventory,

leading to uncertain expected sale constraints. A robust model may require that the expected sales

constraints are satisfied for all the scenarios that may occur, i.e., p ∈ P(ξ), for all ξ ∈ Ξ. Such a

robust model can be formulated as

max
p

(∑
i∈V

x(p|a,b)i− ci

)
pi (30)

subject to (αααt(ξ))Tp≤ rt(ξ) ∀ξ ∈Ξ∑
i∈V

pi ≤ 1, p≥ 0
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where (αααt(ξ), rt(ξ)), ∀t, are the parameters of the expected sale constraints, which are not certain

in the context and depend on a random vector ξ ∈Ξ. Since the objective function is concave and all

the constraints are linear in p, the above problem is generally tractable (Ben-Tal and Nemirovski

1998). A simple but useful setting is that the parameter of the expected sale constraints vary in

a rectangular uncertainty set, i.e., αααt �αααt �αααt and rt ≤ rt ≤ rt for all t ∈ [T ]. In this context, one

can show that (30) is equivalent to the following convex optimization problem

max
p

(∑
i∈V

x(p|a,b)i− ci

)
pi (31)

subject to (αααt)Tp≤ rt∑
i∈V

pi ≤ 1, p≥ 0

Other uncertainty sets may be considered, i.e., polyhedron or ellipsoidal ones, and we refer the

reader to Ben-Tal and Nemirovski (1998) for details.

Appendix B: Proof of Corollary 3

We will give a counter example to illustrate the claim. For the sake of illustration, we only consider

a pricing problem under the MNL model with 2 products and the PSP are homogeneous. We also

consider only one expected sale constraint as α1p1 ≤ rt, where rt/α1 is very small. Let pλ = (pλ1 , p
λ
2)

be a solution to (28) under penalty parameter λ. When λ goes to infinity, Theorem 3 tells us

that a solution to the pricing problem with penalties converge to a solution to the constrained

pricing problem. Thus, for any ε > 0 arbitrarily small, we can chose λ large enough such that

α1p
λ
1 ≤ rt + ε. So, if we choose ε and rt/α1 to be very small, then pλ1 would be very close to

zero. Since pλ1 = exp(a1− bxλ1)
/

(1 + exp(a1− bxλ1) + exp(a2− bxλ2)) (where b is the PSP of the two

products, xλ is an optimal price solution to the pricing problem under penalty parameter λ), we

have limpλ1→0 x
λ
1(p) = +∞, meaning that to have an arbitrarily small probability pλ1 , we need to

increase the price of Product 1 to infinity. On the other hand, pλ2 does not affect the penalty term

and we have limx2→+∞(x2 − c2) exp(a2 − bx2)
/

(1 + exp(a1− bxλ1) + exp(a2− bx2)) = 0. Thus, to

maximize the objective function, the solution xλ2 needs to be finite. So, in summary, we can create

an example yielding a solution (xλ1 , x
λ
2) such that xλ1 can be arbitrarily large and xλ2 is bounded from

above. Thus, (xλ1 , x
λ
2) would not have the constant-markup style. If the PSP not not homogeneous,

but partition-wise homogeneous, we just consider a model that has only one partition, and the

above example can be reused.
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Appendix C: Proof of Theorem 3

First, for notational simplicity we denote R(p) =
∑

i∈V (x(p|a,b,G)i− ci)pi. For (i), we have the

following inequalities

R(pλλλ
1

)−
∑
t

λ1
t max{0, (αααt)Tpλλλ

1

− rt} ≥R(pλλλ
2

)−
∑
t

λ1
t max{0, (αααt)Tpλλλ

2

− rt}

=R(pλλλ
2

)−
∑
t

λ2
t max{0, (αααt)Tpλλλ

2

− rt}− ε
∑
t

max{0, (αααt)Tpλλλ
2

− rt}

≥R(pλλλ
1

)−
∑
t

λ2
t max{0, (αααt)Tpλλλ

1

− rt}− ε
∑
t

max{0, (αααt)Tpλλλ
2

− rt}

So, we have

ε
∑
t

max{0, (αααt)Tpλλλ
2

− rt} ≥
∑
t

(λ1
t −λ2

t )max{0, (αααt)Tpλλλ
1

− rt},

which leads to the desired inequality.

For (ii), since (αααt)Tp∗ ≤ rt for all t, given λλλ∈RT+, we have

vλλλ ≥R(p∗)−
∑
t

λtmax{0, (αααt)Tp∗− rt}=R(p∗) = v∗.

Moreover, since vλλλ− v∗ =R(pλλλ)− v∗−
∑

t λtmax{0, (αααt)Tpλλλ− rt}, we have

R(pλλλ)− v∗ ≥
∑
t

λtmax{0, (αααt)Tpλλλ− rt} ≥ λ0

∑
t

max{0, (αααt)Tpλλλ− rt} (32)

The left hand side of (32) is less than ∆∗ − v∗, so if we choose λ0 ≥ (∆∗ − v∗)/ε then∑
tmax{0, (αααt)Tpλλλ− rt} ≤ ε as desired.

We move to (iii). As shown previously, we can choose λ0 such that max{0, (αααt)Tpλλλ− rt} ≤ ε or

(αααt)Tpλλλ ≤ rt + ε for all t∈ [T ]. We now consider the following problem

max
p≥0∑
i pi≤1

{
R(p)

∣∣∣ (αααt)Tp≤ rt + ε, ∀t
}

(33)

and denote by pε as an optimal solution to (33). Since pλλλ is feasible to (33) we have R(pε)≥R(pλλλ).

Moreover, if we define P := {p ∈Rm| pi ≥ 0,
∑

i pi ≤ 1, (αααt)Tpλλλ ≤ rt,∀t ∈ [T ]}, then v∗ ≥R(p) for

all p∈P. Therefore, we have

|vλλλ− v∗| ≤R(pε)−R(p), ∀p∈P. (34)

We will show that there is p ∈ P such that ||pε − p|| can be arbitrarily small when ε decreases,

which allows us to use the Mean Value Theorem to bound |R(p̃
ε
)−R(p)|. If pε ∈P, then the result

is obvious and we have |vλλλ− v∗|. Now assume that pε /∈P, let T := {t ∈ [T ]| (αααt)Tpε > rt} and for
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any t ∈ T we select it = argmaxi∈V{pεi | αti > 0}. Then we denote I = {it| t ∈ T }. We pick a p̃ such

that {
p̃i = pεi − ε/(mint,j{αtj| αtj > 0}), ∀i∈ I
p̃j = pεj, ∀j /∈ I.

(35)

With this selection, we see that, for any t∈ T

(αααt)Tp̃≤ (αααt)Tpε−αtitε/(min
t,i
{αti| αti > 0})

≤ (αααt)Tpε− ε≤ rt.
(36)

And indeed for any t /∈ T we have (αααt)Tp̃ ≤ (αααt)Tpε ≤ rt. Furthermore, for any t ∈ T , we have

(αααt)Tpε > rt. Combine this with the fact that it = argmaxi∈V{pεi | αti > 0} we have(∑
i

αti

)
pεtt ≥ (αααt)Tpε > rt.

So, under the assumption on the selection of ε, we have the chain of inequalities

pεit >
rt

(αααt)T1
≥min

t

{
rt

(αααt)T1

}
≥ ε

mint,i{αti| αti > 0}
,

meaning that p̃> 0. So, combine with (36) we have p̃∈P.

Moreover, for any point p′ ∈ [p̃,pε] and any i∈ I, we have

p′i ≥ p̃i = pεi −
ε

mint,i{αti| αti > 0}

>min
t

{
rt

(αααt)T1

}
− ε

mint,i{αti| αti > 0}
:= δ(ε). (37)

So, if we denote x′ = x(p′,G) (i.e., the prices that result in purchase probabilities p′). For any

i∈ I, under the assumption that Yi∂Gi(Y)≤LiY li
i we have

LiYi(x
′)li ≥ p′i(1 +G(Y(x′)))δ(ε)

≥ p′i ≥ δ(ε),

where Y(x′) is a vector of size m with entries Yj(x
′) = exp(aj − bjx′j), ∀j ∈ V. So we have

x′i ≤
ai
bi
− 1

bili
log

δ(ε)

Li
.

Moreover, if we look at the gradient of R(p) at p′i. According to Theorem 4.3 in Zhang et al. (2018)

we have

∇pR(p′)i ≤ x′i ≤max
i

{
ai
bi
− 1

bili
log

δ(ε)

Li

}
. (38)

Now, we look at |R(pε)−R(p̃)| and by combining (35), (38), the Mean Value Theorem tells us

that there is p′ ∈ [p̃,pε]

|R(pε)−R(p̃)|=
∑
i∈I

∇pR(p′)i|p̃i− pεi |

≤max
i

{
ai
bi
− 1

bili
log

δ(ε)

Li

}
mε

mint,i{αti| αti > 0}
(39)
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Combine (39) with (34) and recall that p̃∈P, we have

|vλλλ− v∗| ≤max
i

{
ai
bi
− 1

bili
log

δ(ε)

Li

}
mε

mint,i{αti| αti > 0}
.

Combine with the case pε ∈P, we obtain the desired bound, which definitely converge to zero when

ε tends to zero, as desired.

Appendix D: Proof of Proposition 6

For any price solution x ∈X, let z ∈ Rn with entries zn = xi − ci for all i ∈ Vn, n ∈ [N ]. We can

write expected revenue as

Φ(x,a,b) =

∑
n∈[N ] znG

n(Yn|zn,a,b)

1 +
∑

n∈[N ]G
n(Yn|zn,a,b)

,

Moreover, the assumption requiring that αti = αtj for all i, j ∈ Vn, n ∈ [N ] help write the term

(αααt)Tp(x,a,b) as

(αααt)Tp(x,a,b) =

∑
n∈N d

t
nG

n(Yn|zn,a,b)

1 +
∑

n∈[N ]G
n(Yn|zn,a,b)

Thus, we can write the objective function of the robust problem as

L(x,a,b) =H(z,a,b) =

∑
n∈[N ] znG

n(Yn|zn,a,b)

1 +
∑

n∈[N ]G
n(Yn|zn,a,b)

−
T∑
t=1

λtmax{0, (dt)TpG− rt},

which is also the objective function given by a MNL model with N items. Lemma 4 tells us

that (an,b
n
) is the unique solution to the minimization problem min(an,bn)∈AnG

n(Yn|zn,a,b)

and (an,bn) is the unique solution to the maximization problem max(an,bn)∈AnG
n(Yn|zn,a,b)

(we refer the reader to Section 3.2 for the definitions of An, an, bn). Then, we can follow the

same way as in the proof of Lemmas 9, 10 and Theorem 4 to show that the robust problem

maxz∈RN min(a,b)∈AH(z,a,b) is equivalent to maxz∈RN H(z,a,b), which also means that the prob-

lem maxx∈Rm min(a,b)∈AH(z,a,b) is equivalent to maxz∈RN H(z,a,b).

Now we show that (27) can be converted equivalently into a convex optimization problem.

For any vector pG ∈ ∆N := {p ∈ RN+ |
∑

n pn < 1} such that
∑

i p
G
i < 1, we denote by z(pG)

a vector of prices that results in probabilities pG and let Θ(z) : RN → RN such that Θ(z)n =

Gn(Yn|zn)
/(

1 +
∑

j∈[N ]G
j(Yj|zj)

)
, where Gn(Yn|zn) = Gn(Yn|zn,a,b) but we omit the choice

parameters (a,b) for notational simplicity. We also denote by b̃ a vector of size N with entries

b̃n = 〈bn〉. The lemma below show that given any pG, z(pG) can be uniquely determined by solving

a strictly convex optimization problem. The structure of the problem presented in this lemma is

slightly different with those considered in Theorem 4.1 in Zhang et al. (2018), so even though the

proof of the lemma is quite similar, we provide its own proof for the sake of self-contained.
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Lemma 11. Given pG ∈∆N , there is a unique vector z(pG) ∈RN such that Θ(z(pG)) = pG, and

this z(pG) is the unique solution to the convex optimization problem.

min
z∈RN

ln

1 +
∑
n∈[N ]

Gn(Yn|zn)

+
∑
n∈[N ]

pGn b̃nzn

 (40)

Proof: We first prove that (40) is a strictly convex optimization problem. To this end, we will show

that ∇2Q(z) is a positive definite matrix, where Q(z) = ln
(

1 +
∑

n∈[N ]G
n(Yn|zn)

)
. To simplify

the proof and make use of the results in Zhang et al. (2018), let us denote u(z) : RN → RN such

that u(z)n =− lnGn(Yn|zn)/b̃n. with this definition we have

∂u(z)n
∂zn

=

∑
i∈Vn ∂G

n
i (Yn|zn)Yib̃n

Gn(Yn|zn)̃bn
= 1.

The objective function now can be written as

Q(u(z)) = ln

1 +
∑
n∈[N ]

exp(−u(z)n).


Taking the derivative of Q with respect to zn we obtain

∂Q(u(z))

∂zn
=
∂Q(u)

∂un

∣∣∣∣
u=u(z)

∂u(z)n
∂zn

=
∂Q(u)

∂un

∣∣∣∣
u=u(z)

.

And if we take the second derivative with respective to zn, zk, n,k ∈ [N ] we get

∂2Q(u(z))

∂zn∂zk
=
∂2Q(u)

∂un∂uk

∣∣∣∣
u=u(z)

,

or equivalently ∇2Q(z) = ∇2
uQ(u), where u = u(z). Moreover, Q(u) is just a special objective

function under the MNL model with N products and all the PSP are equal to 1. As a result,

∇2
uQ(u) is positive definite (see Theorem 4.1 Zhang et al. 2018), so ∇2Q(z) is also positive definite,

as desired.

Now we know that (40) is strictly convex, so it yields a unique solution. Moreover, one can show

that (40) have finite optimal solutions. For any n∈ [N ], taking the derivative of Q(z) with respect

to zn and set it to zero we obtain∑
n∈[N ]

∑
i∈Vn−∂G

n
i (Yn|zn)Yib̃n

1 +G(Y)
= pGn b̃n,

or equivalently, pGn = Θ(z). So,if z(pG) is the unique solution to (40), we always have pG = Θ(zP )

as desired. �

Next, we will show that the first part of H(z,a,b) is a concave function of pG. We also omit

the choice parameters for notational convenience and denote W(z) =
∑

n∈[N ] znp
G
n . We have the

following lemma.
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Lemma 12. Function W(z(pG)) is concave in pG, for all pG ∈∆N .

Proof: Similar to the previous proof, we also denote u(z)n = − lnGn(Yn|zn). We also see that

pG is also a choice probability vector given by a MNL model with N products with the utility

vector −u(z(pG)) ◦ b̃. So, if we denote u′(pG) be a mapping from RN to RN such that pGn =

exp(−b̃nu′(pG)n)
/(∑

n∈[N ] exp(−b̃nu′(pG)n)
)

, then we have u(z(pG)) = u′(pG)

∂W(z(pG))

∂pGn
= z(pG)n +

∑
j∈[n]

pGj ∂z(p
G)j

∂pGn

= z(pG)n +
∑
j∈[N ]

pGj
∂z(pG)j

∂u(z(pG))j

∂u(z(pG))j
∂pGn

= z(pG)n +
∑
j∈[N ]

pGj
∂u′(pG)j
∂pGn

and
∂2W(z(pG))

∂pGn ∂p
G
k

=
∂z(pG)n
∂pGk

+
∑
j∈[N ]

pGj
∂2u′(pG)j
∂pGn ∂p

G
k

=
∂z(pG)n

∂u(z(pG))n

∂u(z(pG))n
∂pGk

+
∑
j∈[N ]

pGj
∂2u′(pG)j
∂pGn ∂p

G
k

=
∂u′(pG)n
∂pGk

+
∑
j∈[N ]

pGj
∂2u′(pG)j
∂pGn ∂p

G
k

Moreover, if we denote W ′(pG) =
∑

n∈[N ] u
′(pG)np

G
n , we also have

∂2W ′(pG)

∂pGn ∂p
G
k

=
∂u′(pG)n
∂pGk

+
∑
j∈[N ]

pGj
∂2u′(pG)j
∂pGn ∂p

G
k

, ∀n,k ∈ [N ].

So, ∇2W(z(pG)) = ∇2W ′(pG). We also see that W ′(pG) is the expected revenue function (as a

function of the purchase probabilities pG) where there are N products, the choice model is MNL,

the PSP are b̃ and the utility vector is −u′(pG) ◦ b̃ (◦ is the dot product). So we know that

∇2W ′(pG) is positive definite (Zhang et al. 2018), so W ′(z(pG)) is strictly concave in pG. �

With all of the above results, we can formulate (27) as

max
pG,y

W(z(pG))−
T∑
t=1

λtyt

subject to (dt)TpG− yt ≤ rt∑
n∈[N ]

pGn ≤ 1

pG,y≥ 0.

which is a convex optimization problem, as W(z(pG)) is strictly concave.

Appendix E: Detailed numerical results
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Average Max Worst
Percentile rank
of RO worst-case

DET SA10 SA50 RO DET SA10 SA50 RO DET SA10 SA50 RO DET SA10 SA50

0.5 22.6 22.6 22.4 22.4 23.5 23.4 22.9 22.9 21.3 21.5 21.7 21.7 8 4 2
1.0 22.4 22.1 22.1 21.7 24.0 22.8 22.8 22.3 19.1 20.6 20.6 20.7 13 2 2
1.5 21.9 21.9 21.9 21.0 24.3 23.7 22.9 21.4 16.2 17.7 19.0 19.8 19 12 5
2.0 21.7 21.7 21.6 20.2 24.4 23.4 22.9 20.6 12.5 15.7 16.8 18.9 20 12 8
2.5 20.8 20.9 21.0 19.4 24.5 24.0 23.5 19.7 8.8 10.4 12.3 18.1 27 22 17
3.0 19.9 20.5 20.7 18.7 24.5 22.8 22.9 18.9 5.7 10.9 10.6 17.3 32 17 15
3.5 19.2 20.2 20.0 17.9 24.6 22.6 22.8 18.1 3.6 8.5 7.9 16.6 33 15 17
4.0 18.1 19.5 19.3 17.3 24.6 22.9 23.4 17.4 2.0 4.8 3.7 16.0 37 20 26
4.5 17.5 18.4 18.6 16.6 24.6 23.5 22.9 16.7 1.1 2.3 3.3 15.3 38 31 27
5.0 17.5 17.5 18.2 15.9 24.6 23.7 23.1 16.1 0.6 1.1 1.6 14.6 35 34 28
5.5 16.5 17.5 17.0 15.3 24.6 23.4 23.2 15.4 0.4 0.7 0.9 14.1 39 31 35
6.0 16.0 17.0 16.7 14.7 24.6 23.7 23.3 14.8 0.2 0.4 0.5 13.5 40 34 35
6.5 15.7 16.5 16.0 14.2 24.6 23.0 23.3 14.3 0.1 0.3 0.3 13.1 41 33 37
7.0 15.3 15.5 15.8 13.7 24.6 23.2 23.3 13.7 0.1 0.2 0.1 12.4 41 37 37
7.5 14.8 15.1 15.7 13.1 24.6 23.5 23.1 13.2 0.0 0.1 0.1 12.0 43 40 36
8.0 15.4 14.9 15.2 12.7 24.6 23.5 22.9 12.7 0.0 0.0 0.1 11.5 39 39 37
8.5 14.6 14.4 15.0 12.2 24.6 23.4 23.3 12.3 0.0 0.0 0.0 11.0 42 41 38
9.0 13.5 15.1 14.5 11.7 24.6 23.7 22.7 11.8 0.0 0.0 0.0 10.6 46 38 39
9.5 14.5 14.0 14.5 11.3 24.6 23.9 22.8 11.4 0.0 0.0 0.0 10.2 42 43 38

10.0 13.8 14.1 13.5 10.9 24.6 23.8 23.4 11.0 0.0 0.0 0.0 9.8 45 41 43

Average 34 27.3 26.1

Table 1 Comparison results for unconstrained robust (RO), deterministic (DET), and sampling-based (SA10

and SA50) pricing under the MNL logit model with homogeneous PSP.

Average Max Worst
Percentile rank
of RO worst-case

DET SA10 SA50 RO DET SA10 SA50 RO DET SA10 SA50 RO DET SA10 SA50

0.5 23.5 23.3 23.3 23.3 24.5 23.8 23.8 23.8 22.2 22.6 22.6 22.6 18 4 4
1.0 23.2 23.0 22.7 22.8 24.9 23.8 23.2 23.3 20.0 21.4 21.6 21.6 31 5 2
1.5 22.7 22.6 22.5 21.9 25.2 23.6 23.2 22.3 16.7 20.0 20.3 20.6 40 8 6
2.0 22.3 22.3 22.0 21.1 25.3 23.5 22.9 21.5 12.8 18.0 18.9 19.7 44 14 9
2.5 21.3 21.8 21.6 20.4 25.4 23.3 22.5 20.7 9.0 15.7 17.4 18.9 60 19 11
3.0 20.2 21.6 21.3 19.5 25.5 23.6 22.6 19.7 5.7 11.6 14.5 18.1 75 26 15
3.5 19.9 20.8 20.8 18.8 25.5 23.2 23.3 19.0 3.4 9.5 8.9 17.4 66 29 32
4.0 18.8 20.1 20.2 18.1 25.5 23.6 22.7 18.2 2.0 5.6 7.8 16.6 75 46 32
4.5 18.2 19.6 19.5 17.3 25.5 23.7 22.9 17.5 1.1 3.1 4.5 16.0 74 48 41
5.0 17.3 19.3 19.0 16.7 25.5 22.7 22.9 16.8 0.6 3.2 2.8 15.3 79 39 45
5.5 16.8 18.5 18.2 16.1 25.5 22.9 23.1 16.2 0.3 1.7 1.6 14.7 81 46 52
6.0 16.2 17.5 17.7 15.5 25.5 24.0 23.1 15.6 0.2 0.5 0.9 14.2 81 66 58
6.5 16.5 16.9 16.9 14.9 25.5 23.2 23.5 15.0 0.1 0.4 0.4 13.6 77 65 69
7.0 16.1 16.6 16.7 14.3 25.5 23.3 22.8 14.4 0.0 0.2 0.4 13.1 80 69 65
7.5 15.5 16.2 16.4 13.8 25.5 22.8 23.3 13.9 0.0 0.2 0.1 12.5 83 66 66
8.0 15.0 15.6 15.8 13.2 25.5 24.1 23.5 13.3 0.0 0.0 0.1 12.1 87 75 70
8.5 14.9 15.2 15.3 12.7 25.5 23.3 23.1 12.8 0.0 0.0 0.0 11.6 86 76 75
9.0 14.9 15.2 15.2 12.4 25.5 24.1 23.4 12.4 0.0 0.0 0.0 11.2 85 77 76
9.5 15.4 14.6 14.7 11.9 25.5 23.9 22.9 12.0 0.0 0.0 0.0 10.8 83 81 76

10.0 14.8 14.4 14.7 11.5 25.5 22.8 22.5 11.5 0.0 0.0 0.0 10.3 85 77 72

Average 69.5 46.8 43.8

Table 2 Comparison results for unconstrained robust (RO), deterministic (DET), and sampling-based (SA10

and SA50) pricing under the nested logit model with homogeneous PSP.
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Average Max Worst
Percentile rank
of RO worst-case

DET SA10 SA50 RO DET SA10 SA50 RO DET SA10 SA50 RO DET SA10 SA50

0.2 38.5 38.5 38.5 38.2 39.8 39.7 39.6 38.9 36.7 36.9 37.0 37.2 9 6 4
0.4 38.3 38.2 38.2 37.3 40.5 39.6 39.7 38.0 33.6 35.1 35.0 35.6 10 3 4
0.6 38.1 38.1 38.0 36.1 40.9 40.0 39.5 36.7 29.7 32.7 33.3 34.3 18 6 5
0.8 37.5 37.7 37.3 34.8 41.2 40.4 38.8 35.3 25.9 27.2 31.3 33.2 27 15 5
1.0 37.2 37.2 36.9 33.6 41.3 38.9 38.5 33.9 18.4 26.3 28.7 31.9 30 8 8
1.2 36.7 36.7 36.6 32.3 41.5 39.2 38.5 32.5 14.1 23.9 24.0 30.8 30 13 8
1.4 36.0 36.1 35.6 31.0 41.5 38.2 37.1 31.2 10.9 22.5 21.9 29.6 34 11 8
1.6 35.2 35.3 35.3 29.8 41.5 36.7 36.6 29.9 8.2 21.6 22.4 28.6 40 7 5
1.8 35.4 35.2 34.7 28.6 41.5 37.0 36.0 28.7 7.4 16.7 16.9 27.3 37 8 5
2.0 34.9 34.7 34.4 27.4 41.6 36.5 35.8 27.5 3.8 14.0 14.7 26.5 38 8 8
2.2 34.4 34.7 33.8 26.3 41.6 38.4 35.0 26.4 2.7 7.6 17.4 25.5 38 23 5
2.4 34.4 34.5 33.8 25.2 41.6 36.7 35.2 25.3 1.1 7.8 14.4 24.6 35 11 8
2.6 33.7 33.4 33.7 24.1 41.6 34.7 35.2 24.2 1.0 10.2 9.5 23.5 40 6 7
2.8 33.8 33.5 33.5 23.1 41.6 35.6 35.5 23.2 0.7 6.5 7.4 22.6 36 10 9
3.0 33.4 31.7 33.3 22.1 41.6 32.5 35.3 22.2 0.6 15.2 5.8 21.6 37 4 10
3.2 33.7 34.0 33.0 21.2 41.6 36.7 34.5 21.3 0.3 3.0 7.3 20.4 35 12 6
3.4 34.1 33.1 30.8 20.2 41.6 35.0 31.6 20.3 0.3 4.5 16.0 19.5 32 8 3
3.6 33.7 32.0 31.7 19.3 41.6 33.2 32.8 19.5 0.2 1.5 10.4 18.6 33 6 5
3.8 33.0 32.6 32.0 18.4 41.6 42.6 33.4 18.6 0.1 0.1 5.3 17.8 36 40 5
4.0 34.2 31.8 31.4 17.6 41.6 32.8 32.4 17.8 0.0 7.1 6.3 17.0 29 4 4
4.2 33.6 32.8 30.8 16.8 41.6 35.1 31.8 16.9 0.1 0.9 4.8 16.1 30 9 4
4.4 34.0 29.2 30.6 16.0 41.6 29.7 31.6 16.2 0.0 5.8 4.2 15.4 29 3 4
4.6 34.4 33.6 30.7 15.3 41.6 36.9 31.7 15.4 0.1 0.1 1.9 14.6 26 12 4
4.8 34.0 33.8 31.0 14.5 41.6 41.6 32.1 14.7 0.0 0.0 4.6 13.9 28 31 4
5.0 33.9 32.3 29.6 13.8 41.6 34.3 30.3 14.0 0.0 1.5 4.0 13.2 27 8 3

Acerage 30.6 10.9 5.6

Table 3 Comparison results for unconstrained robust (RO), deterministic (DET), and sampling-based (SA10

and SA50) pricing under a nested logit model with partition-wise homogeneous PSP.
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Average Max Worst
Percentile rank
of RO worst-case

λ ε
DET-
CON

DET-
PEN

SA10 RO
DET-
CON

DET-
PEN

SA10 RO
DET-
CON

DET-
PEN

SA10 RO
DET-
CON

DET-
PEN

SA10

0.2

0.5 19.9 20.9 20.7 20.1 21.4 21.9 21.3 20.4 17.4 18.7 19.2 19.3 47 3 2
1.0 19.9 20.9 20.2 18.7 22.8 22.4 20.8 18.9 13.6 16.0 17.9 17.9 21 6 2
1.5 19.9 20.9 21.0 17.1 23.6 22.5 22.5 17.2 8.5 12.7 12.3 16.3 17 6 6
2.0 19.9 20.9 20.5 15.6 24.4 22.6 21.5 15.7 5.2 8.0 10.9 15.0 16 8 4
2.5 20.0 20.8 20.3 14.2 24.9 22.6 21.3 14.2 2.9 5.8 5.0 13.5 14 8 4
3.0 20.0 20.7 19.7 12.8 25.8 22.6 20.5 12.9 1.5 3.2 6.4 12.1 12 8 3

0.4

0.5 19.8 20.0 19.9 19.2 21.0 21.0 21.0 19.5 17.4 17.8 17.9 18.4 10 3 4
1.0 19.8 20.0 19.6 17.7 21.6 21.5 20.4 17.9 14.1 13.8 16.4 16.7 8 4 2
1.5 19.7 20.0 19.1 16.2 22.2 21.6 20.1 16.3 8.6 10.5 13.7 15.3 10 6 3
2.0 19.6 19.9 19.9 14.6 22.6 21.6 21.6 14.8 6.3 6.8 8.2 13.5 10 6 6
2.5 19.5 19.8 18.1 13.3 22.9 21.7 18.8 13.4 2.3 4.9 9.0 11.9 9 7 3
3.0 19.6 19.8 19.7 11.9 23.1 21.7 21.7 12.0 1.5 2.2 1.2 10.3 9 7 7

0.6

0.5 19.7 19.7 19.6 19.0 20.9 20.9 20.5 19.4 17.4 17.3 17.5 18.1 6 5 3
1.0 19.6 19.6 19.6 17.3 21.3 21.3 21.3 17.8 14.0 13.8 14.7 16.1 5 5 4
1.5 19.5 19.5 19.5 15.9 21.4 21.4 21.4 16.2 9.6 10.2 9.1 14.6 7 7 7
2.0 19.4 19.3 18.6 14.2 21.5 21.5 19.9 14.7 6.9 4.5 9.3 12.9 8 9 4
2.5 19.3 19.3 18.6 12.7 21.5 21.5 20.2 13.3 4.2 2.9 5.6 11.4 8 8 5
3.0 19.1 19.0 18.8 10.5 21.5 21.5 21.5 11.9 1.5 2.3 2.2 3.2 2 2 5

0.8

0.5 19.6 19.6 19.6 18.8 20.8 20.8 20.8 19.4 17.3 17.4 17.2 17.8 3 3 3
1.0 19.5 19.5 19.5 17.2 21.3 21.3 21.3 17.8 13.7 13.6 12.7 15.6 4 3 3
1.5 19.3 19.3 19.3 15.5 21.5 21.4 21.5 16.2 9.6 9.1 8.9 13.6 5 4 4
2.0 19.0 19.1 17.1 13.7 21.5 21.5 18.1 14.7 6.0 6.0 13.2 13.3 5 4 5
2.5 18.8 18.9 18.9 11.4 21.5 21.5 21.5 13.2 3.4 3.5 2.4 4.1 2 2 6
3.0 18.7 18.7 18.7 10.6 21.5 21.5 21.5 12.0 1.9 2.5 2.0 7.4 5 5 5

Average 10.1 5.4 4.2

Table 4 Comparison results for deterministic constrained pricing (DET-CON), deterministic pricing with

over-expected-sale penalties (DET-PEN), sampling-based pricing with over-expected-sale penalties (SA10), and

robust pricing with over-expected-sale penalties (RO).
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