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Abstract

We consider the problem of learning from demonstrated tra-
jectories with inverse reinforcement learning (IRL). Moti-
vated by a limitation of the classical maximum entropy model
(Ziebart, Bagnell, and Dey 2010) in capturing the structure
of the network of states, we propose an IRL model based
on a generalized version of the causal entropy maximization
problem, which allows us to generate a class of maximum
entropy IRL models. Our generalized model has an advan-
tage of being able to recover, in addition to a reward function,
another expert’s function that would (partially) capture the
impact of the connecting structure of the states on experts’
decisions. Empirical evaluation on a real-world dataset and a
grid-world dataset shows that our generalized model outper-
forms the classical ones, in terms of recovering reward func-
tions and demonstrated trajectories.

Introduction

We are interested in inverse reinforcement learning (IRL)
(Russell 1998} |Abbeel and Ng 2004; [Ziebart et al. 2008]),
which refers to the problem of learning and imitating ex-
perts’ behavior by observing their demonstrated trajectories
of states and actions in some planning space. The experts are
assumed to make actions by optimizing some accumulated
rewards associated with states that they visit and the actions
they make. The learner then aims at recovering such rewards
to understand how decisions are made, and ultimately to im-
itate experts’ behavior. The rationale behind IRL is that al-
though a reward function might be a succinct and general-
izable representation of an expert behavior, but it is often
difficult for the experts to provide their reward functions, as
opposed to giving demonstrations. So far, IRL has been suc-
cessfully applied in a wide range of problems such as pre-
dicting driver route choice behavior (Ziebart et al. 2008]) or
planning for quadruped robots (Ratliff, Silver, and Bagnell
2009).

Maximum entropy IRL (Ziebart et al. 2008} [Ziebart, Bag-
nell, and Dey 2010) is a powerful probabilistic approach
that has received a significant amount of attention over the
decade. The main advantages of this IRL framework is that
it allows the removal of ambiguity between demonstrations
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and the expert policy and to cast the reward learning as a
maximum likelihood estimation problem. One of the inter-
esting properties of the framework is that the action distribu-
tion can be interpreted as a solution to a causal entropy max-
imization problem under constraints on the empirical expec-
tation of the rewards, which also provides a worst-case pre-
diction log-loss guarantee (Ziebart, Bagnell, and Dey 2010).

In fact, through demonstrations, most of the IRL mod-
els will return a reward function associated with states and
actions, but give no information about the effect of the con-
necting structure of the states on expert’s decisions. In other
words, the way states are connected to others may have a
significant impact on expert’s policy, but, to the best of our
knowledge, this is not captured thoroughly by the classi-
cal IRL models. For example, when travelling in a trans-
portation network, an experienced taxi driver may not only
consider travelling costs, but also take into consideration
the correlation between possible paths. In the next sections,
we will provide a simple example to illustrate this issue.
This type of issue has been widely investigated by numer-
ous econometrics studies (Train 2009).

Motivated by the above issue of the classical IRL models,
we propose a generalized IRL model based on the princi-
ple of maximum causal entropy. More precisely, we propose
a generalized version of the causal entropy function con-
sidered in Ziebart, Bagnell, and Dey| (2010) and show that
solving the corresponding generalized causal entropy max-
imization problem will yield a formulation to infer action
probabilities for the reward learning problem. Our gener-
alized model is more flexible and robust than the classical
ones, in the sense that it allows to recover, in addition to an
expert’s reward function, a function that may partially cap-
ture the correlation between different trajectories. From a
theoretical point of view, our generalized model is also con-
sistent with the maximum causal entropy scheme, and also
holds a worst-case prediction log-loss guarantee. We provide
experiments using a real-world taxi trajectories and a grid-
world dataset. Our results show that the generalized model
performs better than other classical IRL ones, in terms of
recovering expert’s reward functions and recovering demon-
strated trajectories.

Related work. Our algorithm directly generalize the max-



imum causal entropy model proposed in [Ziebart, Bagnell,
and Dey|(2010), so it is closely related to IRL methods pro-
posed by|Ho and Ermon!(2016)); Fu, Luo, and Levine|(2017);
Finn, Levine, and Abbeel| (2016)); and [Levine, Popovic, and
Koltun|(2011). The generative adversarial imitation learning
algorithm proposed by Ho and Ermon| (2016) is a powerful
approach that allows to learn directly from demonstration
without recovering a reward function. Nevertheless, in many
scenarios, a reward function returned from IRL might be
useful to infer expert’s intentions or to avoid re-optimizing
a reward function in a new environment. |[Finn et al.| (2016)
show a connection between generative adversarial networks
(GANSs) (Goodfellow et al. 2014), maximum entropy IRL
and energy-based models. They also propose the adversarial
IRL framework that allows to learn a reward function based
on the GANs idea. |[Fu, Luo, and Levine| (2017) develop an
algorithm based on this adversarial IRL framework, which
provide a way to recover a reward function that is “robust”
in different dynamic settings. These GANs-based algorithms
all rely on the maximum causal IRL framework (Ziebart,
Bagnell, and Dey 2010)), thus can be adapted to use with our
generalized IRL model. There are also some methods aiming
at learning nonlinear reward functions through, e.g., boost-
ing structured prediction (Bagnell et al. 2007), deep neural
networks (Wulfmeier, Ondruska, and Posner 2015)) or Gaus-
sian processes (Levine, Popovic, and Koltun 2011}, which
might also benefit from our generalized IRL model.

Background

An IRL model typically relies on a Markov Decision Pro-
cess (MDP), which consists of states, actions and transition
probabilities when making an action at any state. We first
consider an MDP for an agent, defined as (S, A, p,r,7),
where S is a set of states S = {1,2,...,|S|}, Ais a finite
set of actions, p : S X A x § — [0, 1] is a transition prob-
ability function, i.e., p(s|a, s) is the probability of moving
to state s’ € S from s € S by performing action a € A,
R(a, s|0) is a reward function of parameters 6 and a feature
vector F'(a, s) associated with making decision a € A at
state s € S, and -y is a discount factor.

In this work we consider the case of finite time hori-
zon and undiscounted MDP. We first denote A,S as se-
quences of actions and states: A = {ag,...,ar—1}, S =
{s0y...,87—1}, where a; € A,s; € S are the action
and state at time ¢ € {0,...,7 — 1}. The probability
of A causally conditioned on S is defined as P(A||S) =

H;‘F:_Ol P(at|st), and the causal entropy of A conditional on
S is defined as (Kramer 1998} [Permuter, Kim, and Weissman
2008)

H(A||S) = —Esalln P(A||S)] = — Z P(A,S)In P(A||S)
AS

= Z 1__[ Plai|st)p(si+1]at, s¢) In P(A]]S).

AS t=0

Then, we seek an action distribution that maximizes the fol-
lowing maximum causal entropy function under a constraint
on the empirical expectation of the reward (Ziebart, Bagnell,

and Dey 2010).
maximize H(A|IS)
P(at|st)
subject to Esa[R(S,A)] = EsA[R(S,A)]

Z P(at|st) = 1, VSt,

ar €A

where R(S,A) is the accumulated reward of actions A and
states S, which is a sum of action/state rewards as R(S,A) =
ZtT;(Jl R(ay,st), and A* is the set of possible actions at
time ¢ and E[R(S,A)] is the empirical expectation of the
reward. [Ziebart, Bagnell, and Dey|(2010) show that solving
the above maximum entropy problem will yield a recursive
formulation to infer the action distribution, making the train-
ing of the corresponding IRL model tractable

InZa, s, = R(st,at) + Z p(setilae, se)InZs,

st41€S

Zs, = Z Zay|sts P(at|5t) = Zﬂtlst/Zsﬂ M
ar €At

t=0,....,T—1, as € A", s, € S.

The above formulation provides a way to infer the probabil-
ity of any demonstrated trajectory and to train the IRL model
by maximum likelihood estimation. We note that when the
dynamics are deterministic, i.e., the transition probabilities
only take values of O or 1, then the maximum causal entropy
IRL proposed by Ziebart, Bagnell, and Dey| (2010) is identi-
cal to the maximum entropy IRL model introduced in their
previous work (Ziebart et al. 2008)), which is also an energy-
based model over all possible trajectories (Finn et al. 2016).

Generalized Maximum Causal Entropy

In this section, we will start by showing a bottleneck of
the classical maximum entropy models (Ziebart et al. 2008;
Ziebart, Bagnell, and Dey 2010). We then propose our gen-
eralized maximum causal entropy (GMCE) IRL based on
the maximum causal entropy principle. We will also provide
an algorithm that can be used to practically train the GMCE
IRL model. Lastly, we will take an example to show how the
GMCE gets over the limitation of the classical model.

Bottleneck of the Classical Models

One of the issues of the maximum causal entropy (MCE)
IRL model specified by (1)) is that it only relies on a reward
function associated with states and actions and might not be
able to capture the structure of the network of states, which
would lead to an unreasonable probability distribution over
trajectories. We will take two simple examples (Fig. [Ta]and
and bring some insights from econometrics to illustrate
this issue.

In these examples, we assume that there are three paths
going from an initial node (denoted by O) to a terminal node
(D). Links are the states of the model and we number them
as in the figures. To make the examples simple, we assume
that an action is defined as moving from a state to another
state, which means that the MDP is deterministic. In the left



example, there are three possible paths to go from O to D as
{0,1,4},{0,3,4} and {0, 2,4} and in Fig. there are also
three paths connecting O and D as {0, 1,4,5},{0,1, 3,5}
and {0, 2,5}. We further assume that all the paths have the
same rewards, i.e., R(1) = R(2) = R(3) for Ex. 1 and
R(1) + R(3) = R(1) + R(4) = R(2) for Ex. 2.
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(a) Example 1

(b) Example 2

Figure 1: Simple examples to illustrate a limitation of the classical
IRL model capturing the structure of the network of states

Clearly, the MCE IRL model assigns the same probabil-
ity of 1/3 to each of the three paths in each example. That
makes sense for Ex. 1 where there is no overlap between the
three paths. However, for Ex. 2, the MCE IRL model will
still assign a probability of 1/3 to each of the three paths de-
spite the overlap between two of the paths. More precisely,
if the reward of States 3 and 4 are much smaller than the
reward of State 1 (but the three paths still have the same re-
wards), then we expect that the probabilities of Path {0, 2, 5}
should approach 1/2 and the properties of Paths {0,1,3,5}
and {0, 1, 4,5} should be close to 1/4.

Moreover, if we look at the ratio between the proba-
bilities of any two paths, that ratio does not change no
matter what the other paths are. For instance, if Paths
{0,1,3,5} and {0,2,5} have the same rewards, then
P({0,1,3,5})/P({0,2,5}) is always equal to 1, even if we
add more states to connect O and D, or remove some pos-
sible paths. This property of the MCE IRL also refers to a
well-known issue in econometrics, called the Independence
from Irrelevant Alternatives (ITA) property (Train 2009),
which would result in inaccurate prediction in many appli-
cations.

Generalized Maximum Causal Entropy

To deal with the aforementioned issue, we generalize the
MCE IRL model. To this end, let us define a generalized
causal entropy function of actions A conditional on a se-
quence of states S

HI(A||S) = Eas ZlnG (adlso)lse) [, @)
where G(p|s) : Ry xS — R+. Note in particular that while
we will ultimately be interested in the case where p € [0, 1],
we extend the definition of G' to encompass all p € Ry. To
derive closed-form recursive equations for the action prob-
abilities, we require G to satisfy the following conditions
(Assumption[I), forany p € R4 and s € S.

Assumption 1 Function G(p|s) : Ry x § — R satisfies
the following conditions

(ii) G(p

(i) G(p|s) and OG(p|s)/Op both exist and are positive
s

) is invertible, i.e., there exists an unique function

G~ 1(h|s) : Ry x 8 — Ry such that

G™H(G(pls)ls) = p, ¥p € Ry

(iii) There exists a mapping 11 : S — R such that

OO _

Note that this implies there exists a mapping v : S — R
such that G (p|s) = e”(*)pt(*). Moreover, the above condi-
tions also imply that function G(p|-) is multiplicative, i.e.,
G(pip2|s) = G(p1]s)G(p2|s), Vp1,p2 € Ry. This prop-
erty will be useful for deriving a closed-form solution for
the generalized maximum causal entropy problem.

Now, we aim at solving the following generalized causal
entropy maximization problem under the generalized causal
entropy function defined in (Z). A solution to this problem
will provide a way to infer a probability distribution over
actions and states

maximize HY(A||S) (P2)
P(at|st), Yai,st
subjectto  Ega[R(S,A)] = EsA[R(S,A)]
Z P(at|st) =1
ar €A

Vs, €S,t=0,...,T —1.

The following theorem indicates that, under the conditions
imposed on function G(-) in Assumption (I} there are closed
forms to compute an optimal solution to (P2), making the
training of the GMCE IRL model practically tractable.

Theorem 1 If function G(p|s) satisfies Assumption |I| and
P(at|st), Vas € A, s¢ € S is a optimal solution to the gen-
eralized maximum causal entropy problem (P2), then these
probabilities can be computed by the following recursive
equations

Yat|st = AR(SM at)

>

p(st+1la, s:) nG(Zs, ., [St41)

s$t+1€S
Zat|5t =G ( Yaule t|5t Z Zat|5t
ar €A
P(at‘st) = Zat|st/ZSf,7

t=0,....,T—1,a, € Al,s, € S.

Proof. (sketched). It suffices to find P(a;|s;) that maximize
D = H9(A||S) + AEs Ao[R(S, A)] for a constant A. We de-
note

D =[Ega

ZlnG

Using the method of Lagrange Multipliers, for each s; € S,
we require that 9D/JP(a|s;) are equal over all actions
a; € A'. Taking the derivative of D with respect to P(a;|s;),

at\st |St) + )\R(S A)



removing parts that are equal over a; € A’ and using As-
sumption [T} we obtain

P(ar|st) oc G (exp (AR(s¢, a¢) + U(se, ai)) [se) , (3)

where

st,at Z ]Esk,ak[lnG (ak|sk)‘sk)

k=t-+1
- )\R(sk,akﬂat,st]

Now, by the multiplicativity of G(p|-) in p, we can reduce
U(St, (lt) as

U(8t7at) = Z P(8t+1|a/t,St)lnG(Zst+1‘St+1). (4)

St+1

Combining (3) and (@), we obtain the desired results.

In fact, if G(p|s) = p, then we obtain the recursions in
and the GMCE becomes the classical MCE IRL model.

It is also possible to prove a worst-case prediction log-loss
guarantee for the solution given in Theorem T} as follows.

Theorem 2 A solution to (P2) minimizes the following gen-
eralized worst-case prediction log-loss

ZlnG

inf — sup E/};,s
QEA” peaT
EP(R)=n

where EF (R) = Ef ¢[R(A, S)] and n = Es 4[R(S,A)] (i.e.,
empirical expectation reward) and AT = {P(ay|s;),a; €
At s, € S?ZateAi P(alsy) =1}

Proof. (sketched). We can follow the same strategy in

Griinwald, Dawid, and others| (2004) to prove the result.
First, one can show that

(atlst)]st)] (5)

T—

inf P(A,S) Z
QeAT AS t=0

Gt|5t |8t) (6)

is only achieved uniquely at () = P. This result can proved
by taking the derivative of the Lagrangian function with re-
spect to a variable Q)(a|s;). Setting this derivative to zero
and using Assumption [T|we can show that if () is a solution
to (6), then Q(a|s:) needs to be equal to P(a;|s;) for all
Qt, St.

Thus, the generalized maximum causal entropy (P2) can
be written as

sup  inf P(A,S)
peaT QeaT AS

=P

B (R)=n

ZlnG

at|st ‘St) . (7)

Now, we see that the above objective function is convex in
Q@ (if we fix P) and concave in P (if we fix @), so using
the Neumann’s minimax theorem, we can switch the sup-
inf order and obtain an equivalent inf-sup problem, which is
(). As we have seen, Q = P is the unique solution to the
infimum problem of (7) and P that achieve the supremum
of (7) is a solution to the maximum causal entropy problem
(P2). This leads to our desired result. m

Theorem 2] says that the generalized maximum causal en-
tropy can be viewed as a zero-sum game where the oppo-
nent chooses a distribution over actions/states to maximize
the predictor’s generalized log-loss value, and the predictor
try to choose a distribution to minimize it. This interesting
result indeed holds for the classical MCE IRL model and
Theorem [2] indicates that this also holds for our generalized
model with a generalized log-loss function.

Learning Algorithm

We describe the main steps for computing the Log-
likelihood and its gradient in Algorithm [T} The algorithm
performs a backward procedure from ¢t = T tot = 0.
To make the algorithm general, we just assume that reward
R(at, s¢) is a function of feature vector F(a¢, s¢) and pa-
rameter 6 and VgR(ay, s¢) is the gradient of R(ay, s;) with
respect to 6. In a typical setting, if the rewards have a lin-
ear form, then we can write R(a,s:) = 0" F(as, s:) and
VoR(at, st) = F(as, s¢). Here, we also assume that G(p|s)
is a function of p, a feature vector associated with state s and
some parameters to be inferred through the training. That is,
we can write G(p|s) = G(p|s, 0"), where 0’ is a vector of pa-
rameters of its own. The gradient VoG =1 (eYetls¢|s;) in (B)
refers to the gradient vector of G with respect to its own pa-
rameters 0. The gradient vector of the the log-likelihood can
be straightforwardly derived from the recursive equations in
Theorem [T}

As having said, the conditions in Assumption [I] also im-
plies that G has the form G(p|s) = €”(*)p#(*), One selection

that would be of interest is G(p|s) = p®)'F(9), where O#
is a vector of parameters to be inferred and F(s) is a feature
vector associated with state s € S. We also denote 07 as the
parameter vector for the reward function and in a linear set-
ting, we can write R(a¢, s;) = (0%)"F(ay, s;). The inverse
of G(p|s) becomes G~1(p|s) = exp (Inp/((6#)TF(s))). If
we substitute this function into Eq. 3] we obtain the follow-
ing equations to compute “Z” values and the action/state
probabilities

(6")TF(st, ar)

Yo s, = (0#)TF(s;)
(GM)T}—(StH)

+ Z (st+1]az, s¢) 7(0”‘)T.F(St) InZs, ,,

5141€S ©)
Z(l S
Zs, = Z exp (Ya,1s,) » Plac]s:) = w,

ai €At st

t=T-1,...,0, a¢ eAt,St eS.

Ilustrative Example

In the following we show how the GMCE IRL model gets
over the aforementioned bottleneck of the classical models.
We take the example in Fig. [Tb| and keep the assumption
that all the three paths from State 0 to State 5 have the same
rewards. More precisely, we set R(0) = R(5) = 0, R(2) =
=5, R(1) = —4 and R(3) = R(4) = —1. As being said,
under the MCE IRL model, all the three paths have the same
probabilities of 1/3. Nevertheless, it seems more reasonable



Algorithm 1 Log-likelihood and gradient computation

1: fort="1T,...,1do
2: if ¢t = T then

3: Vag, se,set Yy, s, = R(ae, a¢),Uq,js, = VoR(a, ar)
and Z;, = 1,D,, =0
4: else Vay, s¢

Yo, s, < R(st,at)

DI

st41€S

AG ™ (z]s1)
Oz

p(seralae, s¢)InG(Zs,, |si11)

D5t+1

E — o4t
st G(Zst+1|si+1)

2=Zsy g

Uaylsr < VoR(st,a) + Y
sH.lES

p(ser1lae, 5t)Esyspyy

bl

end if
6: Forall a; € Af,s; €S

_1 Yﬂ. s .
Zatlst — G (el ); Zs, E letlstS

at
0G (zst)
0z Z:eyat\st
+ VoG (e¥atlst |sy) (8)
D, Z Dat\é‘t

at

Y,
Dat|8t — e atlstJ,

tlst

7: end for

8: For any observation (3¢, a:) > LL and its gradients

In P(a:|3¢) < Zay 3,/ Zs0s
Days, _ Ds,

Vo In P(dt‘gt) — Z& th

t15¢

to have a probability of more than 1/3 for Path {0, 2,5}. We
now show how this can be achieved by our GMCE model.

We take the GMCE IRL model specified by G(p|s) =
p*(%). Since the two paths {0, 1,3,5} and {0,1,4,5} all go
though State 2 but Path {0, 2,5} does not overlap with any
other paths, we vary 1(1) while keeping 11(s) = 1 forall s
1. The probabilities of the three paths with respect to differ-
ent p(1) are plotted in the left sub-figure of Fig. [2} noting
that P({0, 1, 3,5}) always equals to P({0, 1,4, 5}). Clearly,
P({0,2,5}) > 1/3 with (1) < 1 and P({0,2,5}) > 1/3
otherwise. When p(1) goes 0, the probability of {0,2,5}
approaches 1/2 and the probabilities of {0,1,3,5} and
{0,1,4,5} approach 1/4, which would be more reasonable
path probabilities given the network structure.

To illustrate how the GMCE model relaxes the IIA issue
mentioned above, we fix p(1) = 0.5 and set u(s) = 1 for
all s # 1. The right sub-figure of Fig. |2| plots ratios be-
tween P({0,1,3,5}) and P({0,2,5}) with different R(4)
(i.e. reward of an irrelevant state). This ratio goes from 1 to
0.4 when we increase the R(4) from -4 (low reward) to 0
(high reward), noting that if x(1) = 1 (i.e. MCE model),
then these ratios are always equal to 1 regardless the re-
ward of State 4. These values are rational from a behav-

1.00 : %1.0
— P({0,1,3,5}) | o
20.75 S

= P({025h | %8
2 0.50 =

_g m_0~6
2833 m
—

s 0.4

0.00 ] 5 3T sy
u(1) R(3)

Figure 2: Example of probability distribution over three simple
paths. The left figure plots the probabilities of Paths {0,2,5}
and {0,1,3,5} when (1) varies. The right figure plots ratio
P({0,1,4,5})/P({0,2,5}) when the reward of State 3 varies.

ioral point of view, as when R(4) is very low, we expect
that Path {0,1,4,5} would become unlikely to be chosen,
and Paths {0, 1,4, 5} and {0, 2, 5} would be similar in terms
of attractiveness. On the contrary, if R(4) is very high, then
due to the overlap between {0, 1,4, 5} and {0, 1, 3,5}, Path
{0,1,4,5} is very unlikely to be chosen and we could ex-
pect that Path {0, 1, 3,5} would be less attractive than Path
{0,1,2,5}, even though they have the same rewards.

In general, the value 1(s) would affect the attractiveness
of all the trajectories passing through that state. So, by recov-
ering such values from demonstrated trajectories, we would
expect to better learn how the structure of the network of
states affects experts’ behavior. Our experiments below also
show that the GMCE model performs better than the classi-
cal IRL models in recovering expert’s trajectories.

Experiments

This section evaluates the GMCE IRL model using two dif-
ferent datasets, namely, a real-world dataset which contains
trajectories of taxi drivers (we shall refer to this dataset as
the Transport dataset hereafter) and a simulated dataset ob-
tained from a classical grid-world. We use the GMCE model
specified by Eq.[9] The model has two vectors of parameters
to be inferred through the training, namely, 8% for the ac-
tion/state reward function and 0* for u(s). For the sake of
comparison, we will compare our generalized model with
the MCE model (Ziebart, Bagnell, and Dey 2010). In the
following, we first describe our datasets, and then show the
comparison results.

Datasets and Experimental Settings

We will evaluate the models based on log-likelihood and
path-matching. We first split each dataset into a training set
and a test set. The training set is first used to train the models.
Next, for each trajectory in the test set, we feed its first state
and last state to the models. Each model will then generate
its most likely path based on the first and last states given.
Matching is then performed between the particular trajec-
tory from the test set and each of the most likely paths from
the models. For each of the most likely paths, we count the
number of states which also appeared in the test trajectory.
Each count is then divided by the length of the test trajectory
in order to give us a percentage of matching. The average
matching metric is computed by taking the average of all the



percentages of matching computed from every trajectory in
the test set for a particular model. The 90% Matching metric
is the count of all percentages of matching that are greater
or equal to 90%, divided by the total number of percentages
of matching.

Transport dataset. The Transport dataset contains a total of
1832 trajectories of taxi drivers. The road network consists
of 7288 links, which are regarded as states in our model. At
each state, the set of available actions for a taxi driver is to
move to one of the connected next states with no uncertainty.
This means that the corresponding MDP is deterministic in
nature. Four features are used to describe each of the states.
Three of the features take binary values representing left-
turn, U-turn, and incident-constant. The latter is to count
the number of intersections on each route trajectory. The
fourth feature is the travel time between each pair of con-
nected links. These features have been used in some estab-
lished route choice modeling studies (Fosgerau, Frejinger,
and Karlstrom 2013} [Mai, Fosgerau, and Frejinger 2015)).
Note that the application can be treated as a finite horizon
problem, as it is rational to assume that a driver only consid-
ers paths that contain a finite number of links (i.e. states).

We use the aforementioned four features to define the re-
ward function. For the y(s), we use the number of incoming
links and outgoing links at each state defined as follows. We
first organize the trajectories in the Transport dataset into
subsets according to which terminal state they end in. The
number of incoming links and outgoing links used in the
definition of 1 function includes only the incoming links and
outgoing links that are active in each subset of trajectories.
Depending on which subset of trajectories that the model is
handling, the number of incoming links and outgoing links
for each state will be different. This is done because if we
consider the entire dataset, most of the states have similar
number of incoming and outgoing links. Thus, without split-
ting into the different subsets, the information of incoming
and outgoing links will not be useful for the model.
Grid-world dataset. The trajectories in the grid-world
dataset is generated from a 5x5 grid-world. The agent starts
from the bottom-leftmost grid and has to move to the top-
rightmost grid, which is also the only terminal state. The ac-
tions available in each grid are move left, move right, move
up, move down, or stay in the same grid. Unlike the Trans-
port dataset, the grid-world dataset is non-deterministic in
nature, i.e., there is a 80% chance that the agent will move in
accordance with its intended action, and the remaining 20%
probability is distributed evenly to the remaining available
actions.

The actual rewards are given in the top-left sub-figure of
Fig.[3] Given the actual rewards, we apply Bellman’s value
iteration (Bellman 1957) to obtain the optimal policy for
the grid-world. This optimal policy is then used in the grid-
world to generate 200 trajectories. Out of these 200 trajec-
tories, 160 trajectories are used to form the training set and
the remaining 40 constitutes the test set. The MCE and the
GMCE models are both trained using the training set and
then evaluated using the test set. There are 5 x 5 states and
5 x b features and each feature corresponds to a position on
the 5 x 5 grid, which is a state. For each state, the feature

corresponding to it will take a value of 1, while the other
features take zero values. The features used for the defini-
tion of the reward function are the same as those used for
the p(s) values, forall s € S.

Comparison Results

Transport dataset. We place 80% of the taxi trajectories
into the training set and the remainder into the test set. To
compare the reward functions returned by the MCE model
and our GMCE model as well as evaluate the impact of the
1 on the performance of our GMCE model, we also take
the rewards R(ay, s¢) from the GMCE after training and set
u(s) = 1 for every state s € S. By doing so, the GMCE
becomes a MCE model but with a different reward function.

GMCE
MCE GMCE

(u(s) = 1)
Log Prob. (training) | -2074.3 | -1988.8 | -2226.6
Log Prob. (test) -566.4 -523.4 -613.8
Avg. Matching 87.6% 89.3% 88.9%
90% Matching 63.5% 67.1% | 67.1%
Prob. of
most likely path 61.0% 63.0% 71.1%

Table 1: Comparison of the performance of the different IRL mod-
els using the Transport dataset

We report the comparison results in Table[I] The first and
second rows clearly show that the GMCE model return sig-
nificantly larger log-likelihood values for both training and
test sets, as compared to the other models. For both mea-
sures on the third and fourth rows (Avg. Matching and 90%
Matching), we see that the GMCE model outperforms the
MCE ones. While the GMCE with p(s) = 1 performs equiv-
alently to the GMCE in terms of 90% Matching, it performs
worse in terms of the average matching of paths. Interest-
ingly, the GMCE with p(s) = 1 provides better 90% Match-
ing values then the MCE model. On the last row of Table[]
we provide the average probabilities of the most likely paths
produced by each of the models. In other words, these val-
ues indicate how likely is the model going to produce the
most likely path given a pair of origin and destination. The
results show that, on average, the GMCE models tend to as-
sign higher probabilities to their most likely trajectories, as
compared to the classical one.

Grid-world dataset. The top-right sub-figure of Fig.
shows the rewards recovered by the MCE model. The top-
rightmost grid is correctly assigned a zero reward. Moreover,
except for grid (4,3), the other grids are assigned somewhat
significant negative rewards, which is consistent with the ac-
tual rewards of the grid-world. However, there are two main
issues occurring with these recovered rewards. First, in the
actual rewards of the grid-world, all grids except the top-
rightmost one have the same reward value of -10. But this
not captured by the recovered rewards of the MCE model.
Second, a few grids, notably grid (4,3), are assigned re-
ward values that are similar to the top-rightmost grid, which
makes MCE’s rewards are quite different from the actual
one.
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Figure 3: Actual rewards and rewards recovered by the MCE and
GMCE models. From left to right, top to bottom: Actual rewards,
rewards by MCE, rewards and p(s) values returned by the GMCE.

The bottom-left sub-figure of Fig.[Jillustrates the rewards
recovered by our GMCE model. Except for 5 grids near the
bottom of the grid-world, all the other grids are assigned sig-
nificantly negative rewards. These rewards are clearly better
as compared to those from the MCE in two aspects. First,
the GMCE model recovers a greater number of significantly
negative grids. Second, the rewards assigned to all the grids
excluding the top-rightmost grid are mostly uniform and
quite similar in values.

For the sake of illustration, in the bottom-right sub-figure
of Fig.[3] we provide a heatmap of the values of y returned
by the GMCE model. Clearly, these j values are not uni-
formly distributed over the grids. Instead, there are two grids
at the top-rightmost being assigned significantly high values
while the other grids takes quite similar and low values. This
distribution of  values, interestingly, is quite similar to the
distribution of the actual rewards.

We now move to other comparing measures evaluating
the ability of the models to recover demonstrated trajecto-
ries. The comparison results are reported in Table 2} The
first two rows show the log-likelihood values attained by the
three models (MCE, GMCE and GMCE with pu(s) = 1),
which clearly indicate that the GMCE model returns signif-
icantly larger log-likelihood values as compared to the clas-
sical MCE, on both training and test sets. On the third and
fourth rows, we see that the MCE and GMCE perform equiv-
alently in terms of Avg. Matching and 90% Matching. The
reason is that both models have the same most likely path.
This most likely path performs noticeably well as it matches
most of the trajectories in the test set. However, the last row
shows that the GMCE has a much higher chance of produc-
ing this most likely path as compared to the MCE model.
In other words, the GMCE is more likely to produce a path
that models the trajectories in the test set. In this sense, the
GMCE outperforms the MCE model.

GMCE
MCE | GMCE
(p(s) =1)

Log Prob. (training) | -1984.2 | -879.8 -3538.5

Log Prob. (test) -533.1 -241.9 -936.0
Avg. Matching 878% | 87.8% | 78.1%
90% Matching 67.5% 67.5% | 0.0%
Prob. of

0.0% 8.0% 0.0%

most likely path

Table 2: Comparison of different IRL models using the grid-world
dataset

Discussions

Our IRL model and algorithm are general and can be ap-
plied to many maximum causal IRL related methods and
applications, e.g., adversarial IRL (Finn et al. 2016), robust
IRL (Fu, Luo, and Levine 2017), and IRL with nonlinear
reward functions (Wulfmeier, Ondruska, and Posner 2015}
Levine, Popovic, and Koltun 2011} Bagnell et al. 2007)). Finn
et al.| (2016) show that if the dynamics are deterministic, the
MCE becomes an energy-based model. This is however not
the case for our GMCE model. This suggests an interesting
question that whether there is a generalized version of the
energy-based model that can represent our GMCE.

Our training algorithm for the GMCE shares the same
structure with the classical maximum entropy IRL, which
requires to estimate “Z” values. The estimation of such val-
ues might be expensive for large or continuous domains. One
could consider a speed-up technique, e.g., parallel comput-
ing, to improve the training algorithm. Future research may
look into an approximation method such as the guided cost
learning (Finn, Levine, and Abbeel 2016), noting that the
“Z” values in our generalized model has a more complex
structure than those from the classical maximum entropy
IRL, leading to the fact that the application of the guided
cost learning is not straightforward.

Our idea on generalizing causal entropy functions would
be a potential direction to develop new and more general
IRL or imitation learning algorithms. For example, one
could consider a generalized causal entropy function to de-
velop a generalized version of the generative adversarial imi-
tation learning algorithm proposed by Ho and Ermon|(2016).
Such generalized model would give a richer expert’s policy
function and may lead to better imitation results.

Conclusion

In this work, we developed a generalized IRL model that is
consistent with the principle of the maximum causal entropy
framework and holds a worst-case prediction log-loss guar-
antee. Our generalized model and algorithm have an advan-
tage of being able to recover an additional expert’s function
that may capture the impact of the structure of the network
on expert’s policies. Our experiments clearly indicated the
advantage of our generalized approach as compared to the
classical ones. Many IRL models and applications would
potentially benefit from our approach. In future work, we
plan to develop generalized algorithms for IRL and imitation
learning in the contexts of unknown or uncertain dynamics.
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