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Abstract

Current kidney exchange pools are of moderate size and thin, as they consist of many highly

sensitized patients. Creating a thicker pool can be done by waiting for many pairs to arrive. We

analyze a simple class of matching algorithms that search periodically for allocations. We find

that if only 2-way cycles are conducted, in order to gain a significant amount of matches over the

online scenario (matching each time a new incompatible pair joins the pool) the waiting period

should be “very long”. If 3-way cycles are also allowed we find regimes in which waiting for a

short period also increases the number of matches considerably. Finally, a significant increase

of matches can be obtained by using even one non-simultaneous chain while still matching in

an online fashion. Our theoretical findings and data-driven computational experiments lead to

policy recommendations.

Keywords: Dynamic Matching; Random Graph Models; Kidney Exchange

1 Introduction

The need for kidney exchange arises when a healthy person wishes to donate a kidney but is

incompatible with her intended recipient. Two main factors determine compatibility of a donor

with a patient: blood-type compatibility and tissue-type compatibility. Two or more incompatible

pairs can form a cyclic exchange so that each patient can receive a kidney from a compatible donor.

In addition, an exchange can be initiated by a non-directed donor (an altruistic donor who does

not designate a particular intended patient), and in this case, a chain of exchanges need not form

a closed cycle.

Current exchange pools are of moderate size and have a dynamic flavor as pairs enroll over time.

Furthermore, they contain many highly sensitized patients (Ashlagi et al. [2012]), i.e., patients that

are very unlikely to be tissue-type compatible with a blood-type compatible donor. One major

decision clearinghouses are facing is how often to search for allocations (a set of disjoint exchanges).

∗Ashlagi: iashlagi@mit.edu. Jaillet: jaillet@mit.edu. Manshadi: manshadi@mit.edu. We thank participants in

the NBER workshop on market design for valuable suggestions and comments.
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On one hand, waiting for more pairs to arrive before finding allocations will increase the number

of matched pairs, especially with highly sensitized patients, and on the other hand, waiting is

costly. This paper studies this intrinsic tradeoff between the waiting time before searching for an

allocation, and the number of pairs matched under myopic, “current-like”, matching algorithms.

Today, clearinghouses for kidney exchange adopt matching algorithms that generally search for

allocations with the maximum number of matches in the existing pool up to some tie-breaking

rules.1 We analyze a similar algorithm, hereafter called Chunk Matching (CM), which accumulates

a given number of incompatible pairs, or a chunk, before searching for an allocation in the pool, and

perform sensitivity analysis on the chunk size. Besides answering this design question, through our

analysis, we indicate the significant role of the sparsity level of the underlying compatibility graph.

We show that if each patient has enough compatible donors in the pool, even making immediate

irrevocable allocations is almost optimal (this is consistent with Ünver [2010], who analyzed the

optimal mechanism when there is no tissue-type incompatibilities). However, in practice (even in

the horizon of a couple of years) pools are of moderate size, containing many highly sensitized pairs.

Roth et al. [2004] first proposed a way to organize kidney exchange integrating cycles and

chains. Logistical constraints required that cycles will involve no more than 2 patient-donor pairs

(Roth et al. [2005b,a]).2 Subsequent work suggested that a modest expand of infrastructure, that is

allowing only slightly larger, 3- and 4-way exchanges would be efficient (Roth et al. [2007], Ashlagi

and Roth [2011]) in large static pools.3 Ünver [2010] has initiated the study of dynamic kidney

exchange showing a closely related result to the static case. These studies assume either implicitly

or explicitly that no tissue-type incompatibilities exists.

However, as data reveals, most patients in exchange pools are either very hard or very easy to

match (high and low sensitized) and indeed, a large fraction of them are very highly sensitized.

Here, we focus on these two types, high and low sensitized, while abstracting away from blood-type

compatibility.4 We consider a discrete time model with n pairs that arrive sequentially, one pair

at each time period. Each arriving pair is sampled from a bi-modal distribution independently.

This model is a dynamic version of Ashlagi et al. [2012]. In the static case, such a model proves

successful in capturing the structure of the current exchange pools, and explaining the effectiveness

of long chains that are widely used in practice (Ashlagi et al. [2012]). One way to think of n is

the number of pairs in the “relevant” horizon, considered to be the longest reasonable period of

waiting.

We first study the performance of the CM algorithm when it searches for allocations limited

1Ties are broken mostly in favor of highly sensitized pairs.
2Cyclic exchanges need to be conducted simultaneously since it is required that a donor does not donate her

kidney before her associated patient receives a kidney.
3Today, kidney exchange is practiced by a growing number of hospitals and formal and informal consortia (see Roth

[2008]). Abraham et al. [2007] have proposed an algorithm that works in practice for finding cycles in relatively large

size exchange pools.
4Equivalently we assume that all pairs in the pool are blood-type compatible.
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to cycles of length 2. In our first main result we show that if the waiting period between two

subsequent match runs is a sublinear function of n, the CM algorithm matches approximately the

same number of pairs as the online scenario (i.e., when searching for a maximum allocation every

period without waiting) does (Corollary 3.4). Waiting, however, a linear fraction between every

two runs, will result in matching linearly more pairs compared to the online scenario (Theorem

3.2). We generalize our results under more flexible waiting periods, allowing for easy and hard to

match pairs wait a different amount of time,

We then analyze CM when cycles of length both 2 and 3 are allowed. We show that for some

regimes, sub-linear waiting (even with only easy to match nodes) will result in a linear addition of

matches comparing to the online scenario (Theorem 6.2).

As chains have become very effective, it is important to study their benefit and analyze the

efficiency of matching with chains (chains are initiated by a non-directed donor). A major difficulty

with chains is that they can be of arbitrary length.5 We show that in the online scenario adding

one non-directed donor will increase linearly the number of matches that the CM algorithm will

find over the number of matches it will find without a chain (see Theorem 6.4). This can be viewed

as the “online version” of the result by Ashlagi et al. [2011], who show that in a static large sparse

pool allowing a single long chain will increase linearly the number of matched pairs.

In all our results in which waiting proves to be effective, the additional matches correspond

to pairs with highly sensitized patients. Pairs with low sensitized patients will (almost) all be

matched regardless of the size of the chunk in each match run. These findings explain computational

simulations using clinical data (Figures 2 and 3).

Our results are given for a pool in which the highly sensitized pairs have on average a constant

number of compatible donors. We extend the results for pools with increasing density levels. The

results show that the more “dense” the pool, the less the clearinghouse should wait in order to

match linearly more pairs than the online solution. This set of results again indicate the crucial

effect of sparsity of the compatibility graph and thus the importance of accurate modeling of it.

Our results may be of independent interest to the literature on dynamic matching in random

graphs. Kidney exchange serves well as an example for which we have distributional information

on the underlying graphs, thus we can exploit this information to make analysis and prediction far

more accurate than the worst-case analysis can do. We believe our average-case analysis can have

implications beyond the kidney exchange and can be applied to other dynamic allocation problems

with such distributional information.

While this paper focuses on kidney exchange, there are many dynamic markets for barter

exchange for which our findings apply. There is a growing number of websites that accommo-

date a marketplace for exchange of goods (often more than 2 goods), e.g. ReadItSwapIt.com

and Swap.com. In these markets, the demand for goods, cycle lengths and waiting times play a

5Note that a chain can be conducted non-simultaneously while keeping the restriction that every patient receives

a kidney before her associated donor gives one.
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significant role in efficiency.

1.1 Related work

The literature on dynamic kidney exchange is in its very beginning. Ünver [2010] initiated dynamic

kidneys exchange focusing on large dense pools. Our work deviates from that model significantly

not only by analyzing sparse pools, but also by abstracting away from the blood types and focusing

on the tissue-type compatibility. Further, our approach to study dynamic kidney exchange is

combinatorial and is based on the structure of the underlying random graph while Ünver [2010]

takes a dynamic programming approach.

Dickerson et al. [2012a] conduct computational simulations in the dynamic settings to under-

stand the benefit of chains. Dickerson et al. [2012b] study dynamic optimization and propose an

algorithm that assigns weights to different matches using future stochastic sampling. These studies

both use dense compatibility graphs.

The problem of online matching (equivalent to our online scenario with only two-ways) arises

naturally in information technology applications such as online advertising in which advertisements

need to be assigned instantly to queries searched or webpages viewed by users. The study of online

matching was initiated by Karp et al. [1990], in which they analyze the problem in adversarial

settings with no probabilistic information about the graph. Several follow up papers, studied the

problem in settings that limit the power of the adversary. Goel and Mehta [2008] studied the

model in which the underlying graph has unknown distribution. Feldman et al. [2009] noticed that

in applications such as online advertising there is information about the graph structure, and they

analyzed a model where the graph distribution belongs to a certain class. Manshadi et al. [2011]

studied the same problem with a general known distribution. Note that here we focus on one special

class of distributions; however, unlike the computer science literature, we consider various regimes

of waiting (and not just the online scenario).

Mendleson [1505–1524] analyzed the behavior of a clearinghouse in a dynamic market with

prices in which sellers and buyers arrive over time according to a given stochastic process. Similar

to our work, he considers a mechanism in which the clearing prices are computed periodically, and

he studies the market behavior for different time (period) scales.

2 Dynamic compatibility graphs and empirical findings

In a kidney exchange pool there are patients with kidney failure, each associated with an incom-

patible living donor, and non-directed donors (NDDs).6 The set of incompatible pairs and NDDs

in the pool, V, induces a compatibility graph where a directed arc from v1 to v2 exists if and

6Pairs that are compatible would presently go directly to transplantation and not join the exchange pool although

Roth et al. [2005a] and Sönmez and Ünver [2011] study the advantage of adding such pairs to the pool.
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only if the donor of pair v1 is compatible with the patient of pair v2.7

A k-way cycle is a directed cycle in the graph involving k pairs. A chain is a directed path

starting from an NDD. A k-allocation or a k-matching is a set of disjoint cycles each of size at most

k. In practice, cycles of size at most 3 are considered due to incentive and logistic reasons.

In a dynamic compatibility graph the pairs (nodes) arrive sequentially one at a time, and at each

time step a centralized program can decide on an allocation and remove the participating nodes

in that allocation from the graph. In this paper, we analyze an algorithm that finds a maximum

allocation every given number of periods (the algorithm is described in detail in Section 3). Such

an algorithm is used in practice and a question faced by centralized programs is how often to search

for an allocation. In the next section, we discuss some empirical findings that will motivate our

modeling assumptions.

2.1 Empirical findings

As opposed to earlier studies that focused on blood types and ignored market size and sensitization

of patients, Ashlagi et al. [2012] have shown, using historical data from the Alliance for Paired

Donation (APD), that sensitization of patients plays a crucial role in efficiency (they were interested

in a maximum allocation in a static pool). Each patient has a level of percentage reactive antibodies

(PRA) that captures how likely a patient will not match a random blood-type compatible donor in

the population. The lower the PRA the more likely the patient will match a random donor. Ashlagi

et al. [2012] find that the percentage of high PRA (PRA above 80%) in the pool is significantly

higher than what previous studies have assumed to support earlier theoretical findings (see also

Saidman et al. [2006] and Roth et al. [2007] for such simulations). They further find that among

patients that have high PRA the average PRA is above 95.

Figure 1 provides a distribution of PRA in the historical exchange pool of the APD. Note that

most pairs have either very high PRA (above 95) or relatively low PRA.

Next we show some initial empirical results when matching over time. We have conducted

computational experiments in which we use clinical data from over two years. For each donor

and patient we can determine using their medical characteristics (blood type, antibodies, antigens)

whether they are compatible even if they have not been present in the pool at the same time in

practice. We test how many matches are obtained when we search for an allocation after every

x pairs have arrived. For each scenario we conduct 200 trials, in which we permute the order in

which the pairs arrive. Figure 2 plots the number of pairs matched under different waiting periods.

Scenarios differ by the length of cycles that are allowed (2-ways, or up to 3-ways, both with or

without a single non-simultaneous chain). Figure 3 is similar only counting the number of highly

sensitized patients that were matched.

7In practice a minority of patients enroll with multiple donors. One can extend the model appropriately to capture

this multiplicity.
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Figure 1: PRA distribution of the patients in the exchange pool.

First note that when matching in an online fashion, allowing cycles of length 3 is quite effective,

and increases the number of matches significantly compared to the case when we only allow 2-way

exchanges. Further, if we add even a single non-simultaneous chain (by adding one altruistic donor

at the beginning), we will match many more pairs.

Interestingly, in 2-way matching, a significant increase in the number of matches occurs only

when the waiting period is “large”. When allowing 3-ways, short waiting does result in slight

improvement, but again a significant gain is only achieved after waiting for a long period. In this

paper, we ground the theoretical foundations that explain these behaviors in dynamic matchings

in “sparse” graphs.

Sections 3-5 focus on allocations with 2-way cycles and we extend the theory for chains and

3-way cycles in Section 6. In the next section we provide our modeling assumptions.

2.2 A dynamic random compatibility graph

In a dynamic kidney exchange graph, there are n patient/donor incompatible pairs which arrive

sequentially at times t = 1, 2, . . . ,n.8 Each pair corresponds to a node in the graph. Each node

is one of two types, L (low PRA) or H (high PRA) capturing whether the patient of that node is

easy or hard to match. The probability that a node is of type H is given by 0 ≤ ρ ≤ 1. When

joining the pool, the arriving node i forms directed edges to the existing nodes. If node i is of

type H (L), it forms an incoming arc with any of the existing nodes independently with probability

8Without loss of generality, assume n is a power of 2.
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Figure 2: Number of matched pairs vs. waiting for x new patients to arrive. Scenarios are: (i) diamond points:

only 2-way cycles are allowed; (ii) square points: 2 and 3-way cycles are allowed; (iii) triangle points: 2-way cycles

and a single chain (the non-directed donor arrives at the first period); and (iv) cross points: 2 and 3-way cycles and

a single chain. Note that triangle and cross points overlap.

pH (pL). Further, it forms outgoing arcs to each L node (H node) independently with probability

pL (pH) (See Figure 4). At each time step, there is an underlying compatibility graph and the

centralized program can find an allocation and remove the participating nodes in that allocation

from the graph. We mostly restrict attention to k = 2, and extend our results to k = 3 in Section

6.1. For the case of k = 2 it will be convenient to reduce cycles of length two to undirected edges

and remove the rest of the directed arcs from the graph. Allocations with k = 2 are just matchings

in the reduced graph.

Note that the maximum number of matches can be obtained after waiting for all pairs to arrive.

This is called the offline solution. As we shall see, the performance of any dynamic allocation

scheme depends heavily on the sparsity level of the compatibility graph which is determined by the

arc probabilities pH and pL. We will assume that pL = p, i.e., an L-patient can receive a kidney

from any donor with a fixed probability that is independent of the pool size. On the other hand, H-

patients are much harder to match, and the historical data suggests their in-degree is very “small”

relative to the pool size (see Section 2.1).

One can in fact show that when n grows large, even in a pool of only highly sensitized pairs, if

pH were to be chosen as a constant, then an online greedy algorithm would match almost all of the

pairs:

Lemma 2.1. Suppose ρ = 1, i.e., all the arriving nodes are H nodes and let pH be a constant. An

online greedy algorithm, which finds a maximum number of matches after each node’s arrival, will
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Figure 3: Number of highly sensitized patients matched vs. waiting for x new patients to arrive. Scenarios are:

(i) diamond points: only 2-way cycles are allowed; (ii) square points: 2 and 3-way cycles are allowed; (iii) triangle

points: 2-way cycles and a single chain (the non-directed donor arrives at the first period); and (iv) cross points: 2

and 3-way cycles and a single chain. Note that triangle and cross points overlap.

H

H/L

pH
L

H/L

pL
H

L H H

L

Figure 4: Arc formation in the dynamic kidney exchange; An H-L 2-way cycle (or, alternatively,

an undirected edge); An H-H-L 3-way cycle.

match in expectation a total of n − o(n) nodes over the n arrivals.

Lemma 2.1 is proven in Appendix A. It is related to the result by Ünver [2010] which assumes

no tissue-type incompatibilities; in both cases the graphs are “dense” enough, or alternatively large

enough, so there is no need to wait before matching. This contradicts our findings that waiting

longer will result in considerably more matches. If the pool size becomes significantly larger in the

future (alternatively, arrival rates become larger), then such results become more relevant.

In addition, random graph results imply that in a large dense graph all blood-type compatible

pairs can be matched to each other using only 2-way cycles. As has been seen in Ashlagi et al.

[2012], this is not the case (see for example Figure 2 in their paper). Thus to capture the sparsity

we observe in practice, we let pH = c/n, where c > 0. In Section 7, we generalize our results for
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other sparsity levels pH = cn−1+σ for any 0 ≤ σ < 1.

Remark: In practice pH should only depend on medical characteristics of the patient regardless of

the population size. Setting pH to be a small number may seem to be a reasonable assumption.

However, in our “relevant” horizon we observe only a small number of pairs to arrive, approximately

Θ(1/pH), which brings us to the proposed model, linking n and Θ(1/pH). For further discussion see

Ashlagi et al. [2012] from which we adopt these probabilistic assumptions. Our model also abstracts

away from blood type compatibilities and focuses on the sensitivity of patients as the sensitivity of

patients is of first order importance in maximizing the number of matches in sparse pools.

3 Chunk matching - main results

We analyze a simple greedy algorithm termed Chunk Matching (CM) which finds allocations each

time a given number of new pairs has joined the pool. Before we describe the chunk matching

algorithm, we study the structure of the compatibility graph; the graph is composed of 3 parts: (i)

the H-H graph, which is the graph induced by the H pairs, (ii) the H-L graph which includes all

nodes and only the edges between nodes of different types, and (iii) the L-L graph, which is the

graph induced by the L pairs (see Figure 5).

H-nodes

L-nodes

Figure 5: The typical graph in the heterogenous model 0 < ρ < 1. Edge probabilities are (c/n)2 in

the H-H graph, p2 in the L-L graph and pc/n in the H-L graph.

CM receives as input two chunk sizes, SH and SL, that determine the waiting times before

making decisions. In particular, after the arrival of SH new nodes, it finds a maximum allocation

in the graph composed of the union of the H-H and H-L graphs, ignoring edges between L nodes.

After receiving SL/SH chunks each of size SH, it also finds a maximum allocation including the L-L

edges. If SH = SL, then both H and L types wait the same amount before being considered, but we

still slightly favor the H-nodes (we first do matching in the graph without edges between L-L pairs

and then we consider the entire graph), trying to compensate for the fact that they have fewer

9



options and so are harder to match. Allowing SH < SL does not only give priority to H-nodes,

but also provides H nodes more matching opportunities by letting L-nodes wait longer. We next

formalize CM as Algorithm 1. At any time t, let Gt be the residual graph with only unmatched

pairs.

Observe that CM with SL = SH = n can result in less allocations compared to the offline solution,

as it prioritizes H nodes. However, in Lemma 5.1 we prove that the difference in the number of

allocations is o(n). Thus, we often use CM with SL = SH = n as a proxy for the offline solution. Let

MC(SH,SL) denote the number of matches obtained by CM with chunk sizes of SH,SL. We will call

the online scenario the case in which SL = SH = 1.

We analyze CM for different regimes of waiting with H and L nodes. First, in Theorem 3.1, we

show that waiting sublinearly with both H and L nodes will not increase the size of the matching

significantly as compared to the case for which we do not wait with H nodes. Later, in Corollary

3.4, we compare the sublinear waiting regime (with both H and L) to the online scenario (not

waiting with neither H nor L), and show that the gain of sublinear waiting is small, i.e., o(n). On

the other hand, waiting linearly with both H and L results in matching linearly more pairs (most

of which are H nodes) as compared to the case for which we only wait with L nodes (Theorem

3.2 Part (b)). In Corollary 3.5, we compare the linear waiting regime (with both H and L) to the

online scenario and show that the gain of linear waiting is significant, i.e., Θ(n). Furthermore, in

Theorem 3.2 part (a), we show that even if we divide the data into a “few” chunks (or equivalently

run the matching after βn steps instead of waiting until the end) we will match linearly less nodes

as compared to the offline solution.

Algorithm 1 Chunk Matching (CM)

1: Let SL be a divisor of n and SH be a divisor of SL; choose a maximum matching algorithm.

For θ = SL, 2SL, . . . ,n:
For z = (θ − SL) + SH, (θ − SL) + 2SH, . . . , θ:

2: Run the maximum matching algorithm on the graph Gz, ignoring edges between L nodes,

breaking ties arbitrarily.

3: Remove the matched nodes.

End for

4: Run the maximum matching algorithm on the graph Gθ, breaking ties arbitrarily.

5: Remove the matched nodes.

End for

Theorem 3.1 (Sublinear Waiting). Suppose S = n1−ε for some 0 < ε < 1 and S is a divisor of n.

Then

E [MC(S,S)] ≤ E [MC(1,S)] + o(n).

Theorem 3.2 (Linear Waiting). Let 0 < β < 1 where βn is a divisor of n.

10



(a) Upper bound: There exists δβ > 0 such that:

E
[
MC(βn, βn)

]
≤ E [MC(n,n)] − δβn.

(b) Lower bound: There exists δ′β > 0 such that:

E
[
MC(βn, βn)

]
≥ E

[
MC(1, βn)

]
+ δ′βn.

The next results show that waiting only with L pairs a constant fraction as opposed to not waiting

at all will increase linearly the number of matched nodes (most of which are H nodes). Waiting

with L pairs a “sublinear time” however, will not increase the size of the matching significantly.

Theorem 3.3 (Nonuniform Waiting).

(a) Let 0 < γ < 1 where γn is a divisor of n. There exists δγ > 0 such that:

E
[
MC(1, γn)

]
≥ E [MC(1, 1)] + δγn.

(b) For any S = n1−ε where 0 ≤ ε < 1:

E [MC(1,S)] ≤ E [MC(1, 1)] + O(S).

Theorem 3.1 and part (b) of Theorem 3.3 imply that:

Corollary 3.4. For any S = n1−ε in which 0 < ε < 1 and S is a divisor of n.

E [MC(S,S)] ≤ E [MC(1, 1)] + o(n).

Also, part (b) of Theorem 3.2 and part (a) of Theorem 3.3 imply that:

Corollary 3.5. There exists δ′′β > 0 such that:

E
[
MC(βn, βn)

]
≥ E [MC(1, 1)] + δ′′β n.

Intuitively, the L pairs will not be difficult to match (as we will show, for online matching with

only L pairs, there is almost no efficiency loss in comparison to the offline solution), and when the

graph is sparse enough there are almost no short cycles in the H-H graph. Understanding how

CM works on the H-L graph (the graph induced by all nodes and edges which connect only two

different types) will be crucial for our proofs. Thus in order to prove Theorems 3.1 and 3.2, we first

prove, in Section 4, closely related results for general sparse homogenous graphs (See Propositions

4.1, 4.3, and 4.8). Then, in Section 5, we build upon the results of Section 4 and prove Theorems

3.1 and 3.2. The proof of Theorem 3.3 is given in Appendix B.

Finally note that even though the online scenario has the worst performance, it still matches

Θ(n) nodes; indeed it finds a maximal matching, and the size of a maximal matching is at last half

of the maximum. Formally, there exists δ > 0 such that: E [MC(1, 1)] ≥ δn.
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4 Chunk matching in sparse homogeneous random graphs

Analyzing the CM algorithm on the H-L graph is an important ingredient to prove our main

results. This is equivalent to studying the CM algorithm on dynamic sparse non-directed bipartite

graphs with uniform edge probability. Our results are stated for both generalized non-bipartite and

bipartite sparse random graphs.

In a dynamic homogeneous random graph, each of n nodes arrive sequentially and there is a

non-directed edge between each arriving node and each existing node with a given probability. A

dynamic homogeneous random graph is thus a non-directed special version of the dynamic kidney

exchange graph. Also the offline graph, in which all nodes have arrived, is in this case simply an

Erdös-Rényi random graph.

In the dynamic homogeneous random graph, the CM algorithm uses a single chunk size, S, and

we denote by MC(S) the number of matches it finds. As we will see the qualitative behavior of

CM in different waiting regimes for this homogeneous model is similar to the ones described in

Section 3. Propositions 4.1, 4.3, and 4.8 below are the counterparts of Theorem 3.1, Theorem 3.2

part (a), and Theorem 3.2 part (b), respectively.

Proposition 4.1. Consider a dynamic homogeneous random graph with edge probability d/n. For

any 0 < ε < 1, and any S = n1−ε that is a divisor of n,

E [MC(S)] ≤ E [MC(1)] + o(n).

Corollary 4.2. Consider the H-L dynamic graph with 0 < ρ ≤ 1. For any 0 < ε < 1, and any

S = n1−ε that is a divisor of n, E [MC(S)] ≤ E [MC(1)] + o(n).

We provide here a proof sketch for Proposition 4.1 (the entire proof is given in Appendix B).

Proof sketch of Proposition 4.1. The intuition of the proof is as follows: after each chunk

arrives, and after removing the matched nodes, the residual graph (before the next chunk arrives)

has no remaining edges. So, suppose now that S new nodes arrive and form edges. The resulting

graph after these arrivals will contain at most O(S) = o(n) edges and thus is extremely sparse.

It consists of O(S) connected components each of size O(1); we show that with high probability,

each of these components is a tree with depth one (See Figure 6). The maximum matching in a

disconnected graph is the union of the maximum matching of each of its connected components.

Thus without loss of generality, the online algorithm will also find the maximum matching in each

of these components separately. For instance consider the example of Figure 6; when r1 arrives, it

forms its three edges. Now since, w.h.p., nodes c1, c2, and c3 will not have any other neighbors in

this arriving chunk (the filled nodes in Figure 6), the decision of an online algorithm and of CM
would be the same.

�

12



r1

c2 c3c1

Figure 6: The typical connected components when the chunk is of a sublinear size; the filled nodes

are the ones which arrived in the last chunk, and the not-filled nodes are those which arrived in

the previous chunks, but which have not been matched yet.

Proposition 4.3. Consider a dynamic homogeneous random graph with edge probability d/n. For

any 0 < β < 1 where βn is a divisor of n, there exists δβ > 0 such that:

E
[
MC(βn)

]
≤ E [MC(n)] − δβn.

Corollary 4.4. Consider the H-L dynamic graph with 0 < ρ ≤ 1. For any 0 < β < 1 where βn is a

divisor of n, there exists δβ > 0 such that E
[
MC(βn)

]
≤ E [MC(n)] − δβn.

We provide here the main lines of the proof of Proposition 4.3. We first need the following lemma

about maximum matchings (largest set of disjoint edges) in Erdos-Renyi random graphs. Let

G(n, d
n ) be an undirected random graph n nodes with edge probability d

n .

Lemma 4.5. The expected size of the maximum matching in G(n, d
n ) is α(d)n, where 0 < α(·) < 1

is a strictly increasing function.

The proof can be derived from Aronson et al. [1998] (see also Ashlagi et al. [2012]).

Proof of Proposition 4.3. LetM be a matching in a non-directed graph G. Note thatM is not

a maximum matching if it has an augmenting path, that is an odd length path v1, v2, . . . , v2l, where

the even edges (v2i, v2i+1) for all i = 1, . . . , l − 1 are in M but the odd ones are not.

We first prove the proposition for S = n
2 , i.e., we show that by matching twice, once after n

2

nodes arrive and once after the last node arrives, CM results in linearly many less matches than

in the offline matching. To do this, we show there are linearly many disjoint augmenting paths for

the union of the two matchings found by CM with S = n
2 .

By Lemma 4.5, the expected size of the matching the CM algorithm finds at time n/2 is α(d)n/2.

Denote by Z1 the set of nodes arriving up to time n/2 and are matched by CM at time n/2, and let

Z2 be the set of nodes that arrive after time n/2 and are not matched by the second matching. For

any v1, v2 ∈ Z1 and w1,w2 ∈ Z2, such that v1 is matched to v2 and the edges (w1, v1) and (v2,w2)
exist, the path p = (w1, v1)(v1, v2)(v2,w2) is an augmenting path. We call such augmenting paths

simple. Denote by P the set of simple augmenting paths.
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In the following two claims, whose proofs are given in Appendix B, we state that the expected

cardinality of P is Θ(n), and that linearly many paths in P are disjoint.

Claim 4.6. E [|P|] = Θ(n).

Intuitively a simple counting argument shows that E [|P|] scales as E
[
|Z1||Z2|

2
]

(d/n)2; |Z2| is

almost surely of linear size (note that many nodes in Z2 are only connected to nodes in Z1), and

the expected size of Z1 is linear in n as well.

Claim 4.7. In expectation, the set P consists of at least δ0.5n vertex-disjoint paths.

So far, we have considered the case S = n/2. For S = n/4 similar arguments show that there

exist δ0.25 > 0 such that E [MC(n/4)] ≤ E [MC(n/2)] − δ0.25n, implying that E [MC(S)] is strictly

decreasing for S = 2−rn for any positive constant r. Since this includes all possible divisors of n, we

are done. �

The next result is closely related to Proposition 4.3. It asserts that by setting the waiting

periods to be linear fractions of n, CM results in linearly many more matches than the online

matching.

Proposition 4.8. Consider a dynamic random graph edge probability d/n. For any 0 < β < 1
where βn is a divisor of n there exists δ′β > 0 such that:

E
[
MC(βn)

]
≥ E [MC(1)] + δ′βn.

Corollary 4.9. Consider the H-L dynamic graph with 0 < ρ ≤ 1. For any 0 < β < 1 where βn is a

divisor of n, there exists δ′β > 0 such that E
[
MC(βn)

]
≥ E [MC(1)] + δ′βn.

Proof of Proposition 4.8. We first consider the first chunk of nodes, βn, and show that, after

βn nodes arrive, CM matches linearly many more nodes than the online matching at that time.

Similarly to the proof of 4.3 we show that the residual graph of the online matching at time βn
contains linearly many disjoint augmenting paths.

Index the nodes by their arrival time, and denote by M the matching found by the online

algorithm at time βn and denote by Π the set of augmenting paths in the graph at time βn that

have the following structure: there are four nodes, i, i′, j′, j such that (a) i is matched to i′ in M

(or M(i) = i′), (b) j′,M(i) < i, i.e., j′ and M(i) arrived before i, (c) j > i, i.e., j arrived after i and

(d) j, j′ are not matched in M (See Figure 7).

Note that when the node i arrives, the CM online algorithm needs to decide whether to match it

toM(i) and j′ (and maybe other existing nodes) and cannot predict thatM(i) is the wrong choice

in this case.

Note that the set of nodes that are not matched byM at time βn, denoted here by Z, is of size

Θ(n), simply because online matches at most the same number of nodes as the maximum matching

does, and by Lemma 4.5, we know that even the maximum matching leaves Θ(n) nodes unmatched.

14



i j

M(i)j′

Figure 7: An augmenting path in the set Π. The dashed edge belongs to matchingM and the solid

edges do not. j′ and M(i) arrived prior to i, and j arrived after i.

The rest of the proof continues in a similar fashion to the proof of Proposition 4.3 with two

claims whose proofs are given in Appendix B.

Claim 4.10. E [|Π|] = Θ(n).

Similar to Claim 4.7, we can show that there exists δ1 > 0 such that at least δ1n of these paths

are disjoint, and can be added to M to construct a larger matching completing the proof for the

first chunk of βn nodes. The following claim asserts a similar result for the later chunks.

Claim 4.11. For any chunk 1 ≤ l ≤ n/S, there exists δl > 0 such that, in expectation, CM matches

δln more nodes after chunk c arrives.

Let δ′β =
∑n/S

l=1 δl; the above claim implies that at the end, the expected number of allocations of

CM is δ′βn more than that of the online scenario, and this completes the proof of Proposition 4.8.

�

5 Chunk matching on heterogeneous graphs and proofs of Theo-

rems 3.1 and 3.2

The results in the previous section are given for the H-L graph only. In order to prove Theorems

3.1 and 3.2, we still need to analyze CM in the entire graph. Recall that the CM algorithm gives

priority to H pairs. In order to prove part (a) of Theorem 3.2, the next lemma will provide the

connection between the H-L graph and the entire graph, showing that we can essentially focus on

the H-L graph. Before we state the lemma we consider the following procedure:

Two-Stage Matching:

a) Find the maximum matching in the H-L graph.

b) Find the maximum matching in the residual L-L graph.

The next lemma, whose proof is given in Appendix B, states that the matching obtained by the

above procedure is nearly optimal:
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Lemma 5.1. Let M̃ be matching obtained by the Two-Stage Matching procedure and M be the

maximum matching; for pH = c/n and pL = p,

E
[
|M̃|

]
≥ E [|M|] − o(n).

Corollary 5.2. A similar result holds for any chunk of the data with size S ≥ n1−ε for 0 ≤ ε < 1,

i.e, the matching of the two-stage scheme produces is at most an o(S) factor away from the one that

a maximum matching algorithm will produce.

The L-L graph is a dense random graph. The following well-known theorem by Erdös and Rényi

asserts that such dense graph, with high probability, has a perfect matching.

Theorem 5.3 (Erdös-Rényi Theorem). With high probability, an Erdös-Rényi random graph G(ν, ξ),
with ξ ≥

log n
n (1 + y) where y > 0, has a perfect matching.

Corollary 5.2 along with the Erdös-Rényi Theorem imply that when comparing the chunk

matching with different chunk sizes, we can focus only on the H-L graph, since the remaining L

nodes can always match to each other, and this does not result in a significant (if any) decrease in

the number of allocations.

Theorem 3.1 now follows from 4.2, and Theorem 3.2 now follows from Corollaries 4.4 and 4.9.

6 Dynamic matching with short cycles and chains

6.1 Waiting with 3-ways

Cycles of size 3 have been shown to increase efficiency in the static pools (Roth et al. [2007], Ashlagi

and Roth [2012]). Here, we generalize some of the results for the dynamic pools when 3-way cycles

are also allowed. We slightly modify CM to a chunk matching scheme denoted by CM3. The

algorithm CM3 also receives two chunk sizes as input; SH and SL where SH ≤ SL. After each SH

steps, CM3 attempts to find a maximum allocation allowing cycles of length both 2 and 3 in the

current compatibility graph excluding the L-L edges; after each SL steps, it finds the maximum

number of exchanges in the whole remaining graph (including the L-L edges). Similar to the 2-

way chunk matching, CM3 also gives higher priority to matching H nodes by searching first for

allocations excluding the L-L edges. Further, if SH < SL, we make the L pairs (that can be easily

matched fast) wait to help matching more H pairs.

For the sake of brevity, we focus on waiting at most a sublinear time (i.e, chunk size S = n1−ε

for some 0 < ε < 1). Proposition 6.1 extends Theorem 3.1 for allowing also 3-way cycles, and its

qualitative implication is the same: given that we wait with L nodes, the difference (in the average

number of matches) between waiting or not waiting with H nodes is not significant (more precisely,

it is not linear in n).
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Interestingly, as we show in Theorem 6.2, waiting with L nodes even a sublinear time proves

to be very effective in some regimes, and results in matching linearly more nodes compared to not

waiting with L nodes at all.

Similar to CM, denote by M3(SH,SL) the number of matches that CM3 with chunk sizes SH and

SL finds. The following proposition and theorem are the main results of this subsection.

Proposition 6.1 (Sublinear waiting with H pairs). Suppose S = n1−ε for some 0 < ε < 1 and S is

a divisor of n. Then

E
[
M3

C(S,S)
]
≤ E

[
M3

C(1,S)
]

+ o(n).

The main difference in the analysis of CM3 is that here we have a directed graph, and the

residual graph does not consist of only isolated nodes anymore; it can contain many directed paths

and even cycles of length greater than 3. However, the residual graph mainly contains H nodes;

similar to the proof of Lemma 2.1, we can show that at the beginning of each chunk the expected

number of L nodes in the residual graph is O(1). Thus to compare the number of allocations of the

two schemes it suffices to compare the number of H nodes they match. Similar to CM (with SH = 1
and SL = S), if we exclude the L-L edges, the graph after a new chunk arrives is very disconnected;

thus the decisions of CM3 and and the online scheme result in almost the same number of matchings.

A formal proof is given in Appendix C.

Theorem 6.2 (Sublinear waiting with L pairs). Let S = n1−ε for some 0 < ε < 1 where S is a

divisor of n. If the parameters ρ, p, and c satisfy the following condition:

(1 − p)(1 − ρ)ce−c(1+2ρ)
− p

(
1 − e−cρ) (1 − c(1 − ρ)e−c

− e−c(1−ρ)
)
≥ δ, (1)

where δ > 0 is a constant, then:

E
[
M3

C(1,S)
]
≥ E

[
M3

C(1, 1)
]

+ δn.

The proof for Theorem 6.2 is given in Appendix C. The intuition for the result is as follows:

In the online scenario, in many occasions, there will be a directed edge from an (arriving) L node

v to an (existing) H node u, but u is not part of a cycle at that time. In fact, there are (linearly)

many such v and u nodes such that v does not have a directed edge to any other H in the graph.

Since v is easy to match, the online scenario will “quickly” find another cycle for the L node v and

the H node u node will remain unmatched. However, under chunk matching, v will have to wait

and since it is an L node, it will be relatively “easy” to close a 3-way cycle with u,v and another L

node arriving in the same chunk. The proof deals with various subtleties such as “harming” other

H nodes by matching node u too early. Figure 8 shows a sample of the set of (c, ρ) parameters that

satisfies Condition (1) for p = 0.1 and δ = 0.001.

The following corollary is a direct implication of Proposition 6.1 and Theorem 6.2. Similar to

corollary 3.4, we compare the CM3 with equal chunk sizes SH = SL = S to the online scenario
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Figure 8: The (c, ρ) region satisfying Condition (1) for p = 0.1 and δ = 0.001.

SH = SL = 1; however, here, for a certain set of parameters (ρ, p, and c), the gain of waiting for S
steps in 3-matching is linear in n as opposed to the 2-matching where the gain is o(n).

Corollary 6.3. Let S = n1−ε for some 0 < ε < 1 where S is a divisor of n. If parameters ρ, p, and

c satisfy Condition (1), then, there exits constant δ′ > 0 such that:

E
[
M3

C(S,S)
]
≥ E

[
M3

C(1, 1)
]

+ δ′n.

6.2 Dynamic matching with chains

In this section, we add an altruistic donor to the pool at time t = 0 and analyze how adding a

single non-simultaneous chain will affect the number of allocations. In particular, each time period

a chain is found, the last node in the chain becomes a bridge donor (BD) for the next period.

Here, we only consider the online scenario and analyze the following scheme: after each new

node arrives, we try to match it through a cycle of length at most k or by adding it to the chain

according to the following rules: (i) the bridge donor (last pair in the chain) must be of type H

and (ii) if the arriving node can form a k-way cycle with at least k − 1 nodes of type H and can

also form a path (of any length) connected to the BD, we break the tie in favor of the k-way. We

denote such an online scheme by Oc
k and its counterpart without the chain by Ok.
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Observe that under Oc
k and Ok the residual graph does not contain any cycles with length smaller

than or equal to k (otherwise we would have performed such a cycle). Our main results compare

the performance of the greedy online matching with or without a chain (Oc
k and Ok):

Theorem 6.4 (Online Allocation with or without Chain). Consider the model given in 2.2; suppose

we have one altruistic donor at time 0;

(a) Suppose ρ = 1, i.e. all nodes are of type H, and k = 3; in expectation, Oc
3 matches Θ(n) more

nodes than O3.

(b) Suppose 0 < ρ ≤ 1, but k = 2. In expectation, Oc
2 matches Θ(n) more nodes than O2.

The proof of Theorem 6.4 is presented in Appendix C. Interestingly, the proof with L nodes

(part (b)) and without L nodes (part (a)) are very different. For example, in the first part without

any L nodes the bridge donor is essentially “forced” to wait for “many” H nodes before it connects

to one and by that time a long path has been formed which allows the bridge donor to match many

nodes at once. On the other hand, with L nodes, those long chains are not formed; when an L

node arrives it can form a cycle or a short chain relatively quickly preventing long paths with only

H nodes to be formed. However, with L nodes, we can construct a solution with many short chain

segments; the idea is to show that, after enough nodes have arrived, each time an L node arrives,

with a constant probability, the bridge donor will initiate a small chain segment by connecting to

the newly arrived L node, and continuing to an isolated path containing only H nodes and of length

at least 2; note that the H nodes in such a path have no other incoming edges, and thus can never

be matched when allowing only 2-way cycles.

Part (b) of Theorem 6.4 is the online version of the main result of Ashlagi et al. [2011], who

show that in a static large sparse pool (equivalent to our offline solution) chains add significantly

to the number of matched pairs.

Note that Theorem 6.4 does not cover the case in which we have both a mixture of H and L

type nodes, and we also allow 3-way cycles. We believe a similar comparison holds for this case as

well, but we were not able to prove it. Thus we state it as the following conjecture.

Conjecture 6.5. Suppose 0 < ρ ≤ 1 and k = 3; in expectation, Oc
3 matches Θ(n) more nodes than

O3 does.

7 Chunk matching in moderately dense graphs

We have studied so far dense graphs (in Lemma 2.1) and sparse graphs where the probability for

connecting to an H node is c
n . The sparsity level is a way to model the graphs we observe in a given

horizon. If kidney exchange grows, we expect to see “denser” graphs in a given horizon. Therefore

to complete the picture we study here graphs in less sparse regimes than c
n .
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More precisely, in this section we assume that pH = cn−1+σ where 0 ≤ σ < 1 and show that

most of the results proven in the previous sections also hold for chunk sizes that scale with 1/pH.

For the sake of brevity, we only provide the exact statement of these results for the homogeneous

(non-directed) random graphs with edge probability cn−1+σ. Similar to the special case of pH = c/n,

these can be generalized to the heterogenous model with both H and L nodes.

The following proposition is the counterpart of Proposition 4.1 and it states that if the chunk

size is smaller than n1−2σ, then we will not gain significantly compared to the online scenario. The

proof is given in the Appendix C.

Proposition 7.1. Consider a dynamic random graph with edge probability cn−1+σ. For any S =

n1−2σ−ε (where ε > 0) that is a divisor of n,

E [MC(S)] ≤ E [MC(1)] + o(n).

Remark 7.2. In a dynamic random graph with edge probability cn−1+σ with σ > 0, the gain we get

by waiting for n1−2σ
≤ S ≤ n1−σ steps in CM is unknown. We conjecture that it is Θ(n) as well.

The next two propositions state that if we wait Θ(1/pH), we loose a constant fraction of the

matching compared to the case when we wait until the end. On the other hand, we gain a constant

fraction compared to the case when we do not wait at all and match right away.

Proposition 7.3. Consider a dynamic random graph with edge probability cn−1+σ; for any 0 < β < 1
where βn1−σ is a divisor of n, there exists δβ > 0 such that:

E
[
MC(βn1−σ)

]
≤ E [MC(n)] − δβn.

Proposition 7.4. Consider a dynamic random graph with edge probability cn−1+σ; for any 0 < β < 1
where βn1−σ is a divisor of n there exists δ′β > 0 such that:

E
[
MC(βn1−σ)

]
≥ E [MC(1)] + δ′βn.

The proofs of Propositions 7.3 and 7.4 are identical to the proofs when p = c/n and are based

on constructing augmenting paths.

Remark 7.5. For any dynamic random graph with edge probability cn−1+σ with σ > 0, the Erdös and

Rényi Theorem (Theorem 5.3) implies that, if we wait till all nodes arrive (or even wait S = Θ(n)
steps) we will find a perfect matching with high probability.

8 Discussion

Previous theory for kidney exchange dealt with dense graphs, finding that efficiency can be obtained

via short cycles. In dense graphs, waiting in order to accumulate incompatible pairs is also not
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an issue. Recently it was shown that the pools we observe in practice are very sparse with many

highly sensitized patients for which the previous theory does not hold. This raises the question

of the tradeoff between waiting for more pairs to arrive and the number of matches one obtains.

We initiate here this direction, studying a class of algorithms that find a maximum allocation after

every x pairs arrive.

We find that in sparse graphs, when only short cycles are allowed, it is only when the algorithm

waits for significant amount of pairs to arrive that it will match significantly many more pairs than

the online scenario does.

It has been shown that even a single unbounded chain, beginning with a non-directed donor,

increases efficiency significantly in large static sparse pools beyond just short cycles. We show here

the dynamic version of this result for the online setting: we find that in the online scenario with

a single non-directed donor the algorithm will match linearly many more pairs than without the

non-directed (this result assumes that either, in both settings, cycles can be of length at most 2,

or the pool only contains pairs with hard to match patients). We conjecture that the last result

holds also when cycles of length k > 2 are allowed.

Our results suggest that if a centralized clearinghouse cannot afford to wait “too long”, then

online matching is a good solution.9 Dynamic chains can be used to reduce the disadvantage of

online matching over matching with waiting.

Our work leaves many more questions than answers. While waiting times are part of the

matching algorithms, we do not study the average waiting time of pairs and only focus on the

number of allocations. Observe that there is very tight correspondence between the number of

matches and waiting time. Thus, although with linear size chunks one obtains more matches, the

average waiting time may increase. Related to this, it will be interesting to study the steady state

of the system. Another direction is whether non-myopic algorithms can improve both the waiting

times and the number of pairs matched. As pairs wait to be matched, designing mechanisms that

take into account incentives for patients (e.g., Roth et al. [2005b]) and hospitals (e.g., Ashlagi and

Roth [2011]) becomes an intriguing task.

Thickness is an important property for efficiency in market design. Kidney exchange clearing-

houses can create a thick market at the cost of waiting for many pairs to arrive. Tradeoffs between

unraveling (waiting before entering the market) and thickness are of practical importance in many

other markets such as job markets and markets for graduate students (see e.g., Neiderle and Roth

[2009]). Our theory can serve as a building block for studying such tradeoffs and for the study of

implementing “efficient” outcomes in the long run when agents have preferences.

9No multi-hospital kidney exchange program in the US is currently waiting more than a month before finding

allocations.
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A. E. Roth, T. Sönmez, and M. U. Ünver. A kidney exchange clearinghouse in New England.

American Economic Review Papers and Proceedings, 95(2):376–380, 2005a.
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A Missing proofs of Section 2

Proof of Lemma 2.1. In order to prove Lemma 2.1, we study the process of the number of

unmatched nodes at any time t; let Zt be the number of unmatched nodes at time t. We show that

E [Zn] = O(1). To do so, we use the basic property of any online greedy algorithm: if node i and

j belong to Zt they could not be matched to each other, thus there is no edge between them (the

probability of this event is (1 − p2
H)). The fact that there is no edge between any two of these Zt

nodes gives us an upper bound on the probability that Zt is larger than one:
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P (Zt = i) ≤ (1 − p2
H)(

i
2) ≤ (1 − p2

H)i−1 2 ≤ i ≤ t.

Using this bound, we compute an upper bound for E [Zt], where t ≥ 2:

E [Zt] =

t∑
i=1

P (Zt ≥ i) ≤ 1 +

t∑
i=2

t∑
j=i

(1 − p2
H) j−1

≤ 1 +
1 − p2

H − p2
H(t − 1)(1 − p2

H)t

p4
H

(2)

Since pH is here a constant independent of n, it follows that E [Zn] = O(1). Finally note that

E [|MG|] = n/2 − 1/2E [Zn] = n/2 − o(n). �

B Missing proofs of Sections 3 - 5

Proof of Proposition 4.1. We first prove the result for S < n1/2, and then generalize it to the

case where n1/2
≤ S ≤ n1−ε.

We begin by showing that the graph induced by the set of nodes in the arriving chunk S contains

no edges with high probability. Denote by E the set of edges induced by the most recent chunk of

nodes (the filled nodes in Figure 6).

E [|E|] = 1/2
∑
i, j∈S

P
(
i is connected to j

)
=
|S| (|S| − 1) d

2n
= O

(
S2

n

)
= o(1). (3)

By Markov’s inequality,

P (|E| > 1) ≤ E [|E|] = o(1),

implying that w.h.p. the set E is empty.

Note that after a new chunk of S nodes arrive, the graph consists of nodes from the previous

residual graph (with no edges between themselves) and the new S nodes. Next we show that after

the arrival of the new S nodes, w.h.p. no node from the residual graph (not-filled nodes in Figure

6) has degree larger than one. Denote by C the set of nodes of the residual graph. By union bound,

we have:
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P (∃ i ∈ C with degree more than 1) ≤
∑
i∈C

P (i has degree more than 1)

= |C| [1 − P (i has degree zero or one)]

= |C|

[
1 − (1 −

d
n

)|S| −
|S|d
n

(1 −
d
n

)|S|−1
]

Using the well-known approximation that for small x, (1 − x)y = e−xy
(
1 + O(x2y)

)
, we have:

P (∃ i ∈ C with degree more than 1) ≤ |C|
(
1 − e−d|S|/n

−
|S|d
n

e−d|S|/n + O(
|S|
n2 )

)
= O(

|C||S|
n2 ) = o(1), (4)

where the last order equality holds because the size of C is at most Θ(n). We have n/S chunks, and

we showed that in each chunk, the gain of CM over the online scenario is o(S). Thus the total gain

of CM compared to online matching is o(n).
Next we extend this analysis to the regime n1/2

≤ S ≤ n1−ε. The basic intuition is the same as

for S < n1/2; the subgraph of the arrived nodes is very sparse and w.h.p. there exists no nodes in the

residual graph that has degree larger than one. The proof of the latter is the same as it is done for

S < n1/2; just consider (4), the P (∃ i ∈ C with degree more than 1) is still o(1) for n1/2
≤ S ≤ n1−ε.

However, the proof of the former is different due to the fact that when we increase S above n1/2,

the subgraph of the arrived nodes will have a few edges; in fact, Equation (3) says that it has

O
(

S2

n

)
= o(S) edges. Suppose we ignore these edges, then similar to the case S < n1/2, we show

that in each arriving chunk, CM matches at most o(S) more nodes that the online does. Now since

adding K edges to a graph increases the size of its maximum matching by at most K, it follows that

when we add these o(S) edges to the whole graph (both filled nodes and not-filled nodes), the size

of its maximum matching increases by at most an o(S) factor. Thus the gain of CM over the online

scenario in each chunk is o(S), and we have O(n/S) chunks, which implies that the overall gain of

CM with S ≤ n1−ε is o(n). �

Proof of Claim 4.6. We need to prove that the cardinality of the set of simple paths is Θ(n).
Note that

E
[
|P|

∣∣∣Z1,Z2

]
=

1
4
|Z1||Z2| (|Z2| − 1)

(
d
n

)2

,

since 1
4 |Z1||Z2|(|Z2| − 1) counts the number of possible paths and the factor

(
d
n

)2
computes the

probability of the two edges across the sets Z1 and Z2. Therefore
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E [|P|] =
1
4
E [|Z1||Z2|(|Z2| − 1)]

(
d
n

)2

. (5)

We will show that Z2 is almost surely |Z2|
0.5n ≥ e−d. This will prove the claim since

E [|P|] =
1
4
E [|Z1||Z2|(|Z2| − 1)]

(
d
n

)2

≥
1
16
α(c)n

(
e−cn

)2
(

d
n

)2

+ o(n)

= ζn + o(n),

So, in the remainder of this proof, let us show that |Z2|
0.5n ≥ e−d almost surely. Denote by O the

set of nodes with degree zero in the second chunk, i.e, node u that arrives after time n/2 belongs

to O if it has no edges. Clearly |Z2| ≥ |O|. We first show that E [|O|] ≥ n/2e−d. We then apply

the Azuma’s inequality to show that the |O| is concentrated around its expectation, and finally the

Borel-Cantelli lemma to show that almost surely |O| → E [|O|].
For each node u that arrives after time n/2, the probability that it has degree zero is (1 −

d
n )n/2−1+|Z0|; recall that Z0 is the set of nodes that arrived before time n/2 but did not get matched

by the first allocation. For n sufficiently large, (1 − d
n )n/2−1+|Z0| ≥ e−d. Thus E [|O|] ≥ e−dn/2. Next

we show that the size of set O is concentrated around its mean. Note that |O| is a function of all

possible edges that may be formed at any time 1, . . . ,n; denote this set by E. For each such edge

e ∈ E, if it exists it may change the value of |O| by at most 2. Thus by the Azuma’s inequality to

the corresponding Doob martingale (see Sinclair [2011]), for any ε > 0:

P (||O| − E [|O||] ≥ εn) ≤ 2
[
exp

(
−

ε2n
4(d + ε′)n

)
P (|E| ≤ (d/2 + ε′)n)

+ exp
(
−
ε2n
4
(n

2
))P (|E| > (d/2 + ε′)n)

]
≤ 4 exp (−ε′′n) ,

where in the first line we condition on the size of the set E and use the fact that the number of

edges formed (the size of E) is concentrated around its expectation (by Chernoff bounds) which is

dn/2 + o(n); further, ε′ and ε′′ are positive constants used for the ease of presentation. Finally, note

that:

∞∑
n=1

P (||O| − E [|O||] ≥ εn) < ∞,

and the Borel-Cantelli lemma implies that |O|/E [|O|]→ 1 almost surely. �
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Proof of Claim 4.7. We will find a lower bound on the number of disjoint paths. We index the

edges in the first matching arbitrarily by (1, 2), (3, 4), . . . , (|Z1|−1, |Z1|), and run the following iterative

procedure: at iteration i, keep one path that contains edge (2i−1, 2i) (say path pi = (ui, 2i−1, 2i, vi))
and delete the others; also delete all paths that include either ui or vi. Clearly this procedure

provides a set of disjoint paths. Next we compute the expected number of paths that remain

after running this procedure. We compute the probability that we have at least one pi in the i-th
iteration; suppose i ≤ 0.5 min{|Z1|, |Z2|}:

P
(
at least one pi

)
= 2

(
|Z2| − 2i + 2

2

) (
d
n

)2

,

on the other hand, if i > 0.5|Z2| then such probability will be zero. Summing over all i ≤ 0.5|Z1|,

we have:

0.5|Z1|∑
i=1

P
(
at least one pi

)
=

0.5 min{|Z1|,|Z2|}∑
i=1

(|Z2| − 2i + 2)(|Z2| − 2i + 1)
(

d
n

)2

≥

(
d
n

)2 0.5 min{|Z1|,|Z2|}∑
i=1

(|Z2| − 2i)2

≥ 4
(

d
n

)2 0.5 min{|Z1|,|Z2|}∑
j=1

j2. (6)

From the proof of the previous claim, |Z2|
0.5n ≥ e−d almost surely. We will further show that |Z1|

0.5n ≥

d/2e−d almost surely: recall that Z1 is the set of nodes that were matched by the maximum matching

at time n/2. Clearly the size of this matching is at least the number of isolated edges in the first

chunk of the data. In expectation we have
(0.5n

2
) d

n

[
(1 − d

n )0.5n−1
]2

such edges. Similar to the proof

of Claim 4.6, we can use the Azuma’s inequality and the Borel-Cantelli lemma to prove that the

number of isolated edges converges to its mean almost surely. This implies that |Z1|
0.5n ≥ d/2e−d, and

consequently that min{|Z1|, |Z2|} = 0.5e−d min{1, d/2}n almost surely. Plugging this in (6) we obtain

that

|Z1|/2∑
i=1

P
(
at least one pi

)
≥ 4

(
d
n

)2
(
0.25e−d min{1, d/2}n

)3

3
= δ0.5nn,

where δ0.5 = d2e−3d min{1,d/2}3
48 . �

Proof of Claim 4.11. First note that we have already proved the claim for l = 1. Next we prove

for l = 2; the main difference between the first two chunks is that at time βn there are some nodes
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left unmatched in both of these schemes. However, the size of these two residual graphs are not

the same; before the new chunk arrives, the online matching has left the set Z of nodes unmatched.

Similarly let Z′ be the set of unmatched nodes of the chunk matching with S = βn. We obtained

that |Z| ≥ |Z′| + 2δ1n for some δ1n.

Note that both the residual graphs are empty. Let us partition the set Z into two subsets Z1

with size |Z′| and Z2. Since all the nodes have degree zero and the future edge formations are

independent and identical, the partition is arbitrary. We can look at the nodes in Z2 as the nodes

that were matched by the chunk matching and not by the online scenario. Thus in the second

chunk, if the online scenario matches a node from the set Z2, it only reduces its previous gap with

the chunk matching. However, at time 2βn we can compare the online and chunk matching on the

sets Z1 and the new arrived chunk similar to the way we compared them at the end of the first

chunk, and get a similar result. Repeating similar arguments for the other chunks , and showing

that in each chunk l, where 1 < l ≤ ∆, there exists δl such that the online matching matches at

least 2δln less nodes that the chunk with S = βn does, completing the proof.

�

Proof of Lemma 5.1. We will show that the number of disjoint augmenting paths in the sym-

metric difference of M̃ and M is at most o(n). Let M̃1 (M̃2) be the matching obtained by running a

maximum matching in the H-L (residual L-L) graph. Note that the H-L graph is a sparse bipartite

Erdös-Rényi with edge probability pc/n. Similar to the proof of Lemma 4.5, we can show that

E
[
|M̃1|

]
= 2α′(pc/n) min{ρn, (1 − ρ)n},

where 0 < α′(·) < 1 is a strictly increasing function. Thus after the first stage, there are Θ(n)
L-nodes that are not matched. The graph induced by the remaining L nodes is a random graph

with edge probability p2 and thus by the Erdos-Renyi Theorem 5.3 contains a perfect matching.

This implies that after running the Two-Stage Matching, the residual graph contains no L-node.

If there were no H-H edges, then the union of M̃1 and M̃2 would give us a maximum matching

w.h.p. which implies that if we ignore the H-H edges, there is no augmenting path in the symmetric

difference of M̃ and M. Now let us add the edges between the H-nodes. Consider the symmetric

difference of M̃ and M: each augmenting path in this symmetric difference will include at least one

H-H edge. Also note that the expected number of H-H edges is c2/2, which is a constant. Thus the

expected number of augmenting paths in the symmetric difference of M̃ and M is o(n). �

Proof of Theorem 3.3. We begin with the proof of part (a). First note that Lemma 2.1 and

the Erdös and Rényi Theorem imply that in both schemes almost all the L nodes will be matched.

Thus we focus on comparing the number of H nodes that these two schemes can match, and show

that CM with SL = γn will match Θ(n) more H nodes.

Let us focus on the first chunk and suppose we index the nodes by the time they arrive; suppose

that at time t < γn/2 and time t + 1 two successive L nodes have arrived and they are connected to
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each other. Suppose node t is not connected to any H node that has arrived before (this probability

is at least (1 − pc/n)t−1). Similarly suppose node t + 1 is not connected to any H node that has

arrived before (again, this probability is at least (1 − pc/n)t−1). Now in the online matching, we

would match node t to an L node either at time t or time t + 1.

On the other hand, we show that in expectation we have Θ(1) nodes of type H that will arrive

after t in this chunk and are only connected to node t. Clearly if we wait until time γn, we could

have matched such an H node to node t. Thus by matching the L node t along the way and not

waiting until time γn, we will decrease the size of matching by Θ(1) factor. Summing over all

1 < t < γn/2, this implies that not waiting (online scenario) decreases the size of matching by Θ(n).
We can now start the detailed proof by introducing some notations. Denote the event that

nodes t and t + 1 are L nodes, connected to each other, and not connected to any available H nodes

by Et. Further, let Ht be the set of H nodes that arrive after t and are only connected to node t.
First let us compute the probability of event Et:

P (Et) ≥ p2(1 − ρ)2
(
1 −

pc
n

)2γn
,

next conditioned on event Et, let us count the set Ht:

E
[
|Ht|

∣∣∣ Et
]

=

γn∑
i=t+2

P
(
i is H node and only connected to t

∣∣∣ Et
)

≥ ρ
(
γn − t − 2

) pc
n

(
1 −

pc
n

)γn−1
.

Putting these two together and summing over all t < γn/2 gives us:

γn/2∑
t=1

E [|Ht|I (Et)] =

γn/2∑
t=1

E
[
|Ht|

∣∣∣ Et
]
P (Et)

≥ p2(1 − ρ)2(1 −
pc
n

)3γn pc
(
γn/2

) (
γn/2 − 1

)
2n

= κn + o(n).

where I (·) is the indicator function and κ > 0 is just a constant used for the ease of presentation.

So far, we have shown that at time γn (end of the first chunk), CM with SL = γn matches Θ(n)
more nodes as compared to the online scheme. One can find similar patterns in later chunks (i.e.,

L nodes that could be matched to H nodes that arrive later in the same chunk, but will be matched

to L nodes by the online scenario) as well and show that in any chunk, CM with SL = γn will match

Θ(n) more nodes, and this completes the proof.

We proceed to the proof of part (b). Again, we focus on the first chunk and suppose we index

the nodes by the time they arrive; in the online schemes (chunk with SH = SL = 1), at any time

1 ≤ t ≤ SL, if an L node arrives and it gets matched to an L node, it may cause a loss in the number
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of matching, because if the algorithm had waited before matching node t, this L node might have

been used to match an H node that has arrived after time t. However, we show that the probability

of this event is “small”: We can have at most S − t such H nodes, and each has an edge with node

t with probability pc/n. Thus by the union bound:

P (L node t could be used to match an H node) ≤
(S − t)pc

n
.

Using this upper bound, we compute an upper bound on the expected number of the mistakes

that the online scheme can make:

E [#of mistakes of online scheme] ≤
S∑

t=1

(S − t)pc
n

= Θ

(
S2

n

)
.

The same bound holds for any later chunk as well. We have n/S chunks and for each of them the

online makes at most Θ
(

S2

n

)
mistakes, therefore the total number of mistakes is at most O(S). This

implies that chunk with SL = S and SH = 1 matches at most O(S) more than the online scenario

(SH = SL = 1). �

C Missing proofs of Sections 6-7

Proof of Proposition 6.1. Similar to the proof of Proposition 4.1, we show that after a new

chunk arrives, the graph (the union of the residual graph and the new chunk excluding the L-L

edges) is so disconnected that the decisions that the CM3 with SH = S makes are mostly the same

as those of CM3 with SH = 1 (See Figure 9). Further, in the second phase when searching for

an allocation in the entire graph (i.e., including the L-L edges), both of these schemes will “see”

almost the same residual graph, and thus find nearly the same number of exchanges.

Consider the k-th chunk where k = Θ(n); the chunk consists of ρS + o(S) nodes of type H and

(1− ρ)S + o(S) nodes of type L. The expected number of incoming edges to this new set of H nodes

is Θ(S2/n) = o(S), so w.l.o.g, we can ignore these edges. However, there are Θ(n) nodes of type H in

the residual graph, and thus we have Θ(S) directed edges from the new chunk to the H nodes in the

residual graph. With high probability, none of these outgoing edges will have the same endpoint in

the residual graph. More precisely, let C3 denote the set of H nodes in the residual graph. Similar

to the calculation of (4), one can show that the probability that there exists a node i ∈ C3 with

more than one incoming edge from the new chunk is o(1).
Given the above observations, let us study the structure of the allocations after the new chunk

arrives. We argue that the matching made by the CM3 (in the first phase when we ignore the L-L

edges) mainly consists of new L nodes and the nodes of set C3 (all the circle nodes in Figure 9);

We showed that the number edges to new H nodes (and thus 2 and 3-way cycles involving them) is

o(S). Further, the number of 2 and 3-way cycles involving only H nodes is also o(S) (in the entire

graph there are O(1) such cycles). However, there are Θ(S) edges from the new L nodes to the
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new chunk

residual nodes

L-nodes H-nodes

l k
k′

i j

Figure 9: The typical connected components when the chunk is of a sublinear size; the filled nodes

are the ones arrived in the last chunk; the circle nodes are L-type and the square ones are H-types.

The not-filled nodes arrived in the previous chunks, but have not been matched yet. The incoming

edges to L-nodes are not shown.

residual H ones (i.e., the set C3). For each node in set C3, we know that it is unlikely that it has

more than one incoming edge from the new chunk. Fix a node v ∈ C3. We distinguish between two

cases.

Suppose first that there doest not exist a node w ∈ C3 for which v has an outgoing edge to such

that w also has an edge from a new L node (for example k′ in Figure 9), then if CM3 chooses a

cycle that contains v it will also choose it in the online scenario.

Second, suppose v has an outgoing neighbor d ∈ C3 such that node d also receives an edge from

a new L node (for example, see nodes k, l, i, j, and the dashed edges in Figure 9). This additional

information may result in matching more nodes by the CM3. For instance, in Figure 9, if node i
arrives before node j and edges (l, i) and (l, j) exist but edge (k, i) does not (which happens with a

constant probability), then the online will match l to i and node k will remain unmatched, but the

CM3 will choose the 3-way of j−k− l. Even though such mistakes are possible, we show that having

these kind of structures is unlikely; For a connected pair of nodes k, l ∈ C3, the probability that

both k and l receive edges from the new L nodes is
(S

2
)

(c/n)2. We only have Θ(n) such connected

pairs in the residual graph, thus the expected number of such patterns is Θ(S2/n) = o(S). Thus the

number of mistakes that the online scheme can make due to making early 2-way cycles is o(S). This

shows that in a single chunk, CM3 can only match at most o(S) more nodes than the online does.

Therefore, in the entire horizon, the gap between number of matches the two schemes achieve is of

order o(n).
�

Proof of Theorem 6.2. Let ACM (AO) be the set of H nodes that the CM3 with SL = S (online,

i.e., CM3 with SL = 1) matches in the entire horizon. We will show that when condition (1) holds
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then |ACM
\ AO

| ≥ |AO
\ ACM

| + δn which implies the result, because as mentioned before both

schemes match almost all L nodes. To do so, we find a lower bound on |ACM
\ AO

| and an upper

bound on |AO
\ACM

|. We find the lower bound by counting the number of some H nodes that CM3

(with SL = S) matches, but online can never match. On the other hand, we find the upper bound

by counting the number of all H nodes that online may match, but CM3 may not be able to match.

Consider the entire graph, and the set of H nodes u with the following properties:

1. Node u has only one incoming edge that is from an L node v.

2. Node u has no outgoing edge to any H node.

3. Node v arrives after u.

4. Node v has no outgoing edge to any other H node.

5. Node u does not form an edge to node v.

First let us evaluate the probability for having such H nodes u: the above five events are

asymptotically independent, and (for large enough n) respectively have probabilities: c(1 − ρ)e−c,

e−cρ, 1/2, e−cρ, and (1 − p).10 Thus conditioned on the event that a node is H, the probability that

these five properties hold is (1/2)(1 − p)(1 − ρ)ce−c(1+2ρ).

Now we claim that any H node that has the above properties will, w.h.p., be matched by CM3

but not by the online scheme. Thus these H nodes will belong to the set ACM
\AO: note that node

u can only be matched in a 2-way or a 3-way that includes v. Because of the last property, u and

v cannot form a 2-way, and the only way to match u is by using 3-way cycles. Because node u
has no outgoing edge to another H node, it is not possible to form a H-H-L cycle with u; thus the

only possible cycle is an H-L-L cycle. We show that CM3 can easily form this cycle, but the online

scheme cannot. Consider the chunk in which node v arrives and forms the edge (v,u). There exist

(1 − ρ)S other L nodes in that chunk; each of these nodes can form a 3-way cycle with u and v
with the constant probability p2; thus, w.h.p., CM3 can find such a 3-way at the end of the chunk.

Also, note that in this chunk, node v can be part of other cycles as well, but since it has no other

outgoing H neighbor, those cycles can be either L-L or L-L-L cycles. Since we give priority to

matching more H nodes, the H-L-L cycle including v has the priority and CM3 will choose it. On

the other hand, w.h.p., the online scheme will match v in some other cycle right after it arrives,

and node u will remain unmatched.

Now we compute an upper bound on |AO
\ ACM

| using the H nodes u that have the following

properties:

1. Node u has indegree at least 2, and at least one of the incoming neighbors is an L node v.

10Note that for n large enough, the indegree of H nodes has a Poisson distribution with rate c. Also, the outdegree

of L/H nodes to H nodes has Poisson distribution with rate cρ.
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2. Node u has at least one outgoing edge to another H node u′.

3. Node u′ has an edge to node v.

Again, let us compute the probability that these three events happen: conditioned on u being H,

the probability of the intersection of the above events is (1/2)p(1− e−cρ)
(
1 − c(1 − ρ)e−c

− e−c(1−ρ)
)
.

We show that any H node that has the above properties may be used by the online scheme to

match another H node that CM3 may not be able to match: suppose node u is matched by CM3 at

time t, but not by the online. At some later time t′ in a later chunk, node u will be in the residual

graph of the online scheme (but not in the residual graph of CM3). Suppose that node u has an

outgoing edge to another H node u′ and at time t′, node u′ has not been matched by neither online

nor CM3. Assume that at time t′ an L node arrives and it forms an outgoing edge to node u, and it

has an incoming edge form u′; now the online scenario can form the H-H-L 3-way cycle u − u′ − v,

but because CM3 has already matched u in a previous chunk it cannot form this cycle. In the worst

case, CM3 will never be able to match u′ in any future chunk, and node u′ will belong to the set

AO
\ACM. The above three properties are minimally required for having such u−u′ − v cycles, and

thus this gives us an upper bound on |AO
\ ACM

|.

Given these two bounds, |ACM
\ AO

| ≥ (n/2)(1 − p)(1 − ρ)ce−c(1+2ρ) and |AO
\ ACM

| ≤ (n/2)p(1 −
e−cρ)

(
1 − c(1 − ρ)e−c

− e−c(1−ρ)
)
, condition (1) implies that CM3 with SL = S matches at least δn

more nodes than CM3 with SL = 1 (i.e., the online scheme) does. �

Proof of part (a) of Theorem 6.4. Observe that the offline graph contains only O(1) cycles of

length 2 or 3 since the expected number of cycles of length constant k is
(n

k
)

(c/n)k = O(1). Thus the

size of matching obtained by the online scenario without a chain (i.e, O3) will be O(1). On the other

hand, we show that, in expectation, Oc
3 can match Θ(n) nodes thus proving the claim: Consider the

arriving process and suppose we index the nodes by the time they arrive. Let i be the first arriving

node that is connected to the altruistic donor. Clearly no chain has been formed before time i.
Also suppose that no 2- or 3-way cycles have been performed either (this happens with a constant

probability). Notice that E [i] = n/c and for any ε, we have P (i > εn/c) = (1 − c/n)εn/c = e−ε + o(1).
Conditioning on the two events that {i > εn/c} and no nodes were matched before time i, we

compute a lowerbound on the expected size of the matching obtained by the online matching with

a single chain; The residual graph at time i is simply a directed Erdös-Rényi graph with at least

εn/c nodes and edge probability c/n. With high probability, such a graph has a path of length

Θ(n) Krivelevich et al. [2012]. Let p = (p1, p2, . . . , pL) be such a path. The probability that i has an

outgoing edge to at least one of the p j’s for 1 ≤ j ≤ L/2 is 1 − (1 − c/n)L/2. Now since L = Θ(n),
this probability is bounded away from zero, implying that with a constant probability the chain

formed at time i matches at least L/2 = Θ(n) nodes. Finally, note that the expected number of

total allocations is at least the number of nodes matched at time i; this completes the proof. �

Proof of part (b) of Theorem 6.4. As usual one can show (similar to the proof of Lemma 2.1)
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that at any time t we have only O(1) nodes of type L in the residual graph. Thus we know that

both schemes will match almost all L nodes, and hence it suffices to compare the number of H

nodes matched by these two schemes. In particular, let Ac
t (At) be the set of allocated H nodes by

O
c
2 (O2) by time t (i.e, up to time t). We aim to show that

E
[
|Ac

n \ An|
]
≥ E

[
|An \ Ac

n|
]
+ Θ(n). (7)

To do so, we study the evolution of the two sets Ac
t and At, and in particular their differ-

ences. The proof will follow from the next two claims that show that E
[
|An \ Ac

n|
]

= o(n) and that

E
[
|Ac

n \ An|
]

= Θ(n), implying together inequality (7).

Claim C.1. For every t, E
[
|An \ Ac

n|
]

= o(n).

Proof. Let It = E
[
|At \ Ac

t | − |At−1 \ Ac
t−1|

]
be the expected increment in the number of nodes that

O2 matches at time t but Oc
2 doesn’t. To prove the claim we show that It = o(1) for any t. Consider

the node arriving at time t and distinguish between the following cases.

(a) Node t is an H node and it is connected to the bridge donor. Observe that the contribution of

this case to the It is at most 2ρc/n: the probability of case (a) is ρc/n, and at any time t, the

maximum number of H nodes that O2 can match (and thus can add to At \ Ac
t at the worst

case) is 2.

(b) Node t is H type and it is not connected to the bridge donor. In this case, it is possible that O2

matches node t to a node u, but Oc
2 cannot do so, because node u was matched before. Thus

node t will be added to At \Ac
t . However, we argue that the probability of this event is o(1): If

node u is H type, the probability of a having a H-H two-way is (c/n)2 and since we only have

O(n) nodes of H type in our pool, the probability that such a two-way exists is at most O(1/n).
Next suppose that node u is of type L. In this case the probability of a having a H-L two-way

is pc/n, but in expectation, we only have O(1) such L nodes in the residual graph, thus the

probability of this event is of order o(1) as well. Therefore, the contribution of this case to It is

o(1).

(c) Node t is an L node and is connected to the bridge donor.

Note that scheme O2 can match at most one H node, say node u. If node u was matched

already by Oc
2, then It would be zero. On the other hand, if node u was not matched by Oc

2
before, then Oc

2 can also perform the 2-way cycle (t,u), and since we give the priority to the

2-way with one H node, Oc
2 will perform such a cycle, and again It will be zero.

(d) Node t is L type and it is not connected to the bridge donor.

The analysis of this case is very similar to the previous case and again we can show that It = 0.
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Claim C.2. E
[
|Ac

n \ An|
]

= Θ(n).

Proof. It is enough to show that the expected increment in each step t = Θ(n) is Θ(1). Fix a step

t. With probability (1 − ρ)p the arriving node is an L node which is also connected to the bridge

donor. We show that with a constant probability, Oc
2 can add a path of length at least 4 to the

chain that contains at least 2 nodes of type H that O2 can never match through any two-ways, thus

these two nodes will surely belong to Ac
n \ An. Consider the entire pool (i.e., the graph that we

obtain if we wait until time n and make no allocations). A constant fraction of the H type pairs

in this pool have indegree one: more precisely, the probability that a node of type H has indegree

one is
c(n−1)

n (1 − c/n)n−2. Suppose node u is such a node with the only incoming edge (v,u). With

a constant probability node v is also of type H and has only one incoming edge (w, v) where w is

of type L. At time t large enough (t = Θ(n)), we will have a linear number of such isolated (v,u)
edges in both of our residual pools (i.e., the residual graph of Oc

2 and the one of O2). Suppose at

time t, case (c) happens, and there is an edge from t to one of these isolated directed edges, say

edge (v,u), (i.e., edge (t, v) exists) and node t has no other outgoing edges to any of the H nodes in

the pool. This happens with a constant probability bounded away from zero. Also suppose there

is no edge from v to t. Note that O2 can never match neither u nor v. However, Oc
2 can add the

path (BD, t, v,u, . . .) to the chain. Thus we prove that each time a new L node arrives, and it is

connected to the BD, with a constant probability we add two nodes to Ac
t \ At that can never be

removed from Ac
j \ A j for j ≥ t. �

�

Proof of Proposition 7.1. The proof is very similar to the proof of 4.1; We use the observations

that at any time the residual graph has no edges, and the graph formed after a new chunk of

nodes arrived is extremely disconnected. Using the notation defined in the proof of 4.1, we first

upperbound the probability that there exists a node c ∈ C with degree more than one:

P (∃ i ∈ C with degree more than 1) ≤
∑
c∈C

P (i has degree more than 1)

= |C| [1 − P (i has degree zero or one)]

= |C|
[
1 − (1 − pH)|S| − |S|pH(1 − pH)|S|−1

]
≤ |C|

(
1 − e−|S|pH − |S|pHe−|S|pH + O(|S|p2

H)
)

= O(|C||S|p2
H) = O(|C|n−1−ε) = o(1).

This shows that the edges between the newly arrived nodes and the nodes from the previous

chunks most likely form many depth-one trees. Further, we show that there are only few edges in
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the subgraph of the newly arrived nodes: the expected number of edges among the new nodes is

O(S2pH) = O(n1−3σ−2ε) = o(S). Putting these two observations together in a similar manner (as we

did in the proof of 4.1) , will prove the proposition. �
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