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Abstract

In this paper, we study a general online linear programming problem whose formulation en-
compasses many practical dynamic resource allocation problems, including internet advertising
display applications, revenue management, various routing, packing, and auction problems. We
propose a model, which under mild assumptions, allows us to design near-optimal learning-based
online algorithms that do not require the a priori knowledge about the total number of online
requests to come, a first of its kind. We then consider two variants of the problem that relax
the initial assumptions imposed on the proposed model.

1 Introduction

Online optimization is attracting wide attention from computer science and operations research
communities. It has many applications, including those dealing with dynamic resource allocation
problems. In many real-world problems, information about the instance to optimize is not com-
pletely known ahead of time, but revealed in an online fashion. For example, in typical revenue
management problems, customers arrive sequentially offering a price for a subset of commodities,
e.g. multi-leg flights. The seller must make irrevocable decisions to accept or reject customers
at their arrivals, and try to maximize long-term overall revenue while respecting various resource
constraints. Another example is the so-called AdWords problem, also known as the display ads prob-
lem. From keyword search queries arriving online, the problem is to sequentially allocate ad slots
to budget-constrained bidders/advertisers. Similar problems appear in online routing problems,
online packing problems, online auctions, and various internet advertising display applications.

In this paper, we consider a general online linear programming that covers many of the examples
mentioned above. To be precise about the problem, we need to introduce some notations. Let I be
a set of m resources; associated with each resource i ∈ I is a capacity bi. The set of resources and
their capacities are known ahead of time. Let J be a set of n customers; each customer has a set of
options Oj and arrival time tj. We assume that every customer has a bounded number of options,
i.e. there exists a constant q such that |Oj | ≤ q for all j. Each option o ∈ Oj has a value πjo and
requires aijo units of resources i for each i ∈ I, also written ajo as a vector of dimension m. The
set of options Oj and associated (πjo,ajo) are revealed at time tj when customer j arrives. Upon
arrival, the online algorithm must decide immediately and irrevocably whether or not to satisfy the
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customer, and, if yes, which option to choose. The goal is to find a solution that maximizes the
overall revenue from customers while respecting resource constraints. More precisely, we consider
the following linear program:

max
∑

j

∑

o∈Oj
πjoxjo

s.t.
∑

j,o aijoxjo ≤ bi, ∀i
∑

o∈Oj
xjo ≤ 1, ∀j

xjo ≥ 0, ∀j, o

(1)

where ∀j,πj ∈ (0, 1]|Oj |,aj ∈ [0, 1]m×|Oj |, and b ∈ R
m
+ . In the online version of this problem,

(πj,aj) is revealed only when customer j arrives at time tj. Upon that arrival, and constrained by
irrevocable decisions xj′o made for customers arriving earlier, the online algorithm must then make
decisions xjo, such that

∑

j′:tj′≤tj

∑

o∈Oj′
aij′oxj′o ≤ bi, ∀i

∑

o∈Oj
xjo ≤ 1

xjo ≥ 0, ∀o ∈ Oj

(2)

The goal is to choose the variables x such that the objective function
∑

j

∑

o∈Oj
πjoxjo is maximized.

Several models (on how online instances are chosen) can be used to evaluate online algorithms,
including the adversarial model, the i.i.d. model with or without knowledge of distributions, and
the random permutation model. In the adversarial setting, no further assumption is made on
the model. In that case, no online algorithm can achieve better than O(1/n) fraction of the
optimal offline solution [3]. However, as the adversarial setting is too conservative, it is natural to
consider stochastic models. In the i.i.d. model with known distribution about future customers,
positive results have been obtained for various problems. For many practical problems, such an
assumption may be too strong, and the i.i.d. model without knowledge of the distribution would
be more suitable. A weaker model, but easier to analyze, the random permutation model, has been
considered more frequently. In that model, the order of customers is a uniform random permutation,
and many near-optimal results have been obtained for it.

In this paper, we propose a new model, closer to the random permutation model, but removing
a fundamental, yet practically questionable, assumption behind it. In all results using the random
permutation model, the exact knowledge about the total number of customers to come is a key
assumption, essential for ensuring near-optimality results. Without such information, no non-trivial
result can be achieved. In many practical settings, including all the applications discussed above,
this assumption is however far from being realistic. We consider instead a more realistic and natural
setting, initially using the following two assumptions (the consequences of the relaxations of these
two initial assumptions will also be considered in our paper):

Assumption 1. Customers have i.i.d. random arrival times.

The assumption is reasonable in many practical problems where customers’ arrival rates are homo-
geneous throughout time. Ignoring the specific arrival times, the order of customers is essentially
equivalent to the random permutation model. Later in the paper, we will relax the assumption and
take heterogeneity of arrival rates into account.

Assumption 2. The distribution governing random arrival times is known to the online algorithm.

The assumption is necessary to estimate the total number of customers in case no past data is
available. However, as discussed in Section 4, if a limited amount of past data is available, this
assumption is not needed anymore.

2



For simplicity in the presentation of this paper, we make two additional technical assumptions,
which can be removed without compromising the validity of our results, as we explain below.

Assumption 3. The arrival time is modeled as a continuous random variable.

No matter what the nature of the original random variable is, we can add an auxiliary random
variable taj , uniformly distributed between [0, 1] for every customer j upon his arrival. We define a
total ordering on pairs (tj , t

a
j ) based on lexical order. Note that the order of customers is preserved

except for those who arrive exactly at the same time. The artificial ordering imposed on these
customers does not help an online algorithm.

Assumption 4. There are no degeneracies among all points {(πjo,ajo)}j,o and (0,0), i.e. no m+2
points share the same m-dimensional hyperplane.

If this is not the case, we can introduce a random perturbation on πjo: every πjo is multiplied by
an i.i.d. random variable uniformly distributed between [1, 1+ ǫ]. After the perturbation, there are
no degeneracies almost surely. On the other hand, because the perturbation is small enough, the
optimal value of the solution is affected by no more than a multiple factor of 1 + ǫ.

1.1 Our Techniques and Contributions

The online algorithms proposed in our paper share similar ideas with some other papers [6][2][7]:
the algorithms first observe (without making any allocation) customers arriving early over a given
period of time, and solve an offline LP problem over those customers. The corresponding optimal
dual solution then works as a pricing mechanism for making online allocations on the following set
of customers. The dual prices are updated from time to time to depict customers’ preference more
accurately as time moves along. We prove that such algorithms are 1− ǫ competitive under several
different scenarios if resource capacities are large enough.

Our paper significantly improves previous results by removing the need to know a priori the
number of customers n, a critical assumption in [6][2][7]. To the best of our knowledge, this is the
first attempt to do so. As pointed out in several papers, knowing n is so essential that no near-
optimal online algorithms can be obtained even under a probabilistic version of that assumption.
So a new model, with near-optimal online algorithm aspiration, would need to introduce alternative
assumptions.

We believe our model with arrival time fits reality better: In practice, the setting that an
online problem is more likely to face typically involves a known fixed period of time over which the
customers are considered, rather than a known fixed number of customers to come. The question
that a company usually asks is how to maximize revenue over a given period of time instead of how
to maximize revenue over a given fixed number of future customers. The arrival time of a customer
is also more natural and informative than his rank order. Furthermore, our model is more flexible
as it allows, depending on specific applications, various extensions which can better fit real-world
scenarios. For example, in airline revenue management problems, business customers and casual
customers have different price-sensitivity and arrival time. The random permutation model cannot
capture the heterogeneity among customers well. In contrast, our model can easily be extended to
such scenarios, as demonstrated in Section 5.

We first consider problems where the distribution of arrival time is known in advance. Although
similar in form, the previous approaches with fixed number of customers do not address our model
well. One could first estimate the number of total arrivals in the early stage, and then use the
estimation for the fixed-number algorithm as in [2]. However, the performance of this approach
depends on the quality of the estimation. In order to keep the loss due to the estimation below
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ǫ-fraction, the estimation error must be within ǫ-fraction. According to concentration laws, it
requires the total number of customers be at least O(1/ǫ3). Noting that bi’s are only required to
be O(1/ǫ2), this new requirement on the total number of customers is quite restrictive. On the
other hand, our approach works for any number of customers, even if the number is smaller than
O(1/ǫ2).

We then consider two scenarios for which our initial assumptions are relaxed. In the first
scenario, we do not assume the knowledge of the exact distribution, but some past observations
instead. Instead of estimating the cumulative distribution function (CDF) on every point, we only
make estimation on only a few critical points. This approach requires much less data points than
the naive one. In the second scenario, we consider heterogeneous customers.

1.2 Literature Review

Inspired by applications such as advertisement display, online matching, and allocation problems
have been recently studied extensively in the operations research and computer science communi-
ties. Three different models have been considered: adversarial model, i.i.d. model, and random
permutation model.

In an adversarial model, no information is known to online algorithms about customers or
requests. Karp et al. [12] consider a bipartite matching problem, present a best possible algorithm,
RANKING, with a competitive ratio of 1− 1/e. Aggarwal et al. [1] propose a 1− 1/e-competitive
algorithm for a vertex-weighted version of the same problem. Mehta et al. [15] and Buchbinder et
al. [5] propose two different best possible algorithms for the Adwords problem.

In the random permutation model, the set of customers is still unknown to the online algorithm,
but the order in which customers arrive is a uniformly random permutation. Goel and Mehta [9]
prove that a greedy algorithm is 1 − 1/e competitive for the AdWords problem. Devanur and
Hayes [6] present a near optimal online algorithm for the same problem under mild assumptions.
More recently, Agrawal et al. [2] and Feldman et al. [7] propose near optimal algorithms, based
on similar ideas, for general linear programming problems and packing problems. Mehdian and
Yan [13] and Karande et al. [11] simultaneously prove RANKING algorithm is 0.696-competitive
for the bipartite matching problem. Mirrokni et al. [16] propose an algorithm that works well for
the AdWords problem in both adversarial and random permutation model.

In the i.i.d. model, customers or requests are drawn repeatedly and independently from a known
probability distribution. Feldman et al. [8] present a 0.670-competitive algorithm for a bipartite
matching problem. Manshadi et al. [14] give a 0.702-competitive algorithm for a slight variation of
the same problem. Jaillet and Lu [10] improve both these bounds to 0.729 and 0.706, respectively.

Organization: The rest of the paper is organized as follows. In Sections 2 and 3, we present online
algorithms for our basic model and prove that they are near optimal under mild conditions. In the
following two sections, we consider situations where we can remove assumptions imposed on the
model: the assumption on the knowledge of arrival distributions in Section 4 and the assumption
on the homogeneity of customers in Section 5. In both sections, we propose and prove near optimal
online algorithms.

2 One-Time Learning

Let F (·) be the cumulative distribution function of the random arrival time of customers. Assump-
tion 3 ensures that its inverse F−1(·) is well defined. Consider Sǫ = {j : tj ≤ F−1(ǫ)}, the set of
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customers arriving earlier than F−1(ǫ). From Assumption 1, every customer belongs to Sǫ with
probability ǫ.

The online algorithm observes customers in Sǫ, rejects them all, and then computes dual prices
by solving the following primal dual LPs:

max
∑

j∈Sǫ,o∈Oj
πjoxjo

s.t.
∑

j∈Sǫ,o∈Oj
aijoxjo ≤ (1− ǫ)ǫbi,∀i

∑

o∈Oj
xjo ≤ 1,∀j ∈ Sǫ

xjo ≥ 0,∀j ∈ Sǫ, o ∈ Oj

min
∑

i(1 − ǫ)ǫbipi +
∑

j∈Sǫ
qj

s.t.
∑

i aijopi + qj ≥ πjo,∀j ∈ Sǫ, o ∈ Oj

pi ≥ 0,∀i
qj ≥ 0,∀j ∈ Sǫ

(3)

Let x̂ and p̂ be the optimal primal and dual solutions for these problems.
For customers arriving later, they are accepted if payments exceed the threshold set by p̂:

xjo(p̂) =







1, if πjo −
∑

i

aijop̂i > max
o′ 6=o

{πjo′ −
∑

i

aijo′ p̂i, 0}

0, otherwise

(4)

The proposed online algorithm is then as follows:

Algorithm 1 Online Learning Algorithm(OLA)

1: Reject all customers arriving earlier than F−1(ǫ).
2: Let xj = xj(p̂) for customers arriving after F−1(ǫ).

We call a customer j degenerate if the maximizer for maxo{πjo −
∑

i aijop̂i} is not unique or
πjo−

∑

i aijop̂i = 0. Degeneracies may lead to undesired results. Fortunately, due to Assumption 4,
there are at most m + 1 degenerate customers, and all of them, if any, are in Sǫ. For degenerate
j, the decision rule xj(p̂) = 0. For non-degenerate j, using complementary slackness, xj(p̂) equals
the optimal solution x̂j to LP (3), as stated in the following lemma (see proof in appendix):

Lemma 1. For non-degenerate j ∈ Sǫ, x̂jo = xjo(p̂) for all o ∈ Oj .

In this paper, we repeatedly use concentration laws to show that some undesired events rarely
happen. In particular, we use Bernstein inequalities:

Bernstein Inequalities [4]: Let X1, ...,Xn be independent zero-mean random variables. Sup-
pose there exists M > 0 such that |Xi| ≤ M almost surely for all i. Then, ∀t,

Pr(

n
∑

i=1

Xi > t) ≤ exp
(

−
t2/2

∑

i E[X
2
i ] +Mt/3

)

.

Toward the analysis of our online algorithms, we first show that the resulting solution is feasible
with high probability:

Lemma 2. If mini bi ≥ 5m ln(nq/ǫ)/ǫ3, then w.p. 1− ǫ,
∑

j,o aijoxjo(p̂) ≤ bi for all i.

Proof. From Lemma 1, we have

∑

j∈Sǫ,o

aijoxjo(p̂) ≤
∑

j∈Sǫ,o

aijox̂jo ≤ ǫ(1− ǫ)bi.
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We would like to apply Bernstein inequalities to show that
∑

j,o aijoxjo(p̂) ≥ bi rarely happens.
The difficulty is that the random variables {aijoxjo(p̂)}j,o depend on the realization of S via p̂. To
get around the issue, let us first fix p and i, and consider the event

{
∑

j,o

aijoxjo(p) ≥ bi,
∑

j∈Sǫ,o

aijoxjo(p) ≤ (1− ǫ)ǫbi} (5)

For every customer j, because the arrival time is uniformly distributed between [0, T ], j ∈ Sǫ with
probability ǫ. Hence,

E[
∑

j∈Sǫ,o

aijoxjo(p)] = ǫ · E[
∑

j,o

aijoxjo(p)]

Using Bernstein’s inequalities, we have

Pr(
∑

j,o aijoxjo(p) ≥ bi,
∑

j∈Sǫ,o
aijoxjo(p) ≤ (1− ǫ)ǫbi)

≤ Pr(
∑

j,o aijoxjo(p) ≥ bi,
∑

j∈Sǫ,o
aijoxjo(p)− E[

∑

j∈Sǫ,o
aijoxjo(p)] ≤ −ǫ2bi)

≤ exp(−ǫ3bi/4) ≤ ǫ/mnm.

According to [17], R|I| can be divided into no more than (nq)m regions such that all p in a region
lead to the same x(p). By taking union bounds over all possible p and i, we have with probability
ǫ, there exist i and p such that (5) is true. So:

Pr(∃i,
∑

j,o
aijoxjo(p̂) ≥ bi)

= Pr(∃i,
∑

j,o
aijoxjo(p̂) ≥ bi,

∑

j∈Sǫ,o
aijoxjo(p̂) ≤ (1− ǫ)ǫbi)

≤ Pr(∃i,p,
∑

j,o
aijoxjo(p) ≥ bi,

∑

j∈Sǫ,o

aijoxjo(p) ≤ (1 − ǫ)ǫbi) ≤ ǫ.

By taking the complement, we conclude the lemma.

After obtaining feasibility, we now compare the online solution with the offline optimal solution
OPT . Note that OPT is the optimal solution to LPs:

max
∑

j,o πjoxjo
s.t.

∑

j,o aijoxjo ≤ bi,∀i
∑

o∈Oj
xjo ≤ 1,∀j

xjo ≥ 0,∀j, o

min
∑

i bipi +
∑

j qj
s.t.

∑

i aijopi + qj ≥ πjo,∀j, o
pi ≥ 0,∀i
qj ≥ 0,∀j

(6)

We now show that the objective value of online solution x(p̂) is close to OPT :

Lemma 3. If mini bi ≥ 5m ln(nq/ǫ)/ǫ3, then w.p. 1− ǫ,

∑

j,o

πjoxjo(p̂) ≥ (1− 3ǫ)OPT (7)

Proof. Let us consider the following LP:

max
∑

j,o πjoxjo
s.t.

∑

j,o aijoxjo ≤ b̂i, ∀i
∑

o∈Oj
xjo ≤ 1, ∀j

xjo ≥ 0, ∀j, o

(8)
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where b̂i =
∑

j,o aijoxjo(p̂), if p̂i > 0 and b̂i = max{
∑

j,o aijoxjo(p̂), bi}, if p̂i = 0. By complementary
slackness, x(p̂) is the optimal solution to this LP.

We then show that with probability 1 − ǫ, b̂i ≥ (1 − 3ǫ)bi,∀i. For i such that p̂i = 0, it is
trivially true from the definition of b̂i. For i such that p̂i > 0, by complementary slackness, we have
∑

j∈Sǫ,o
πjox̂jo = (1− ǫ)ǫbi. Furthermore, according to Assumption 4 and Lemma 1, at most m+1

different j make xjo(p̂) 6= x̂jo. Noting that πjo ∈ (0, 1], we have

∑

j∈Sǫ,o

πjoxjo(p̂) ≥
∑

j∈Sǫ,o

πjox̂jo − (m+ 1) = (1− ǫ)ǫbi − (m+ 1) ≥ (1− 2ǫ)ǫbi

Using the same technique as in the proof of Lemma 2, we can show that

Pr
(

∃i, s.t.
∑

j∈Sǫ,o

πjoxjo(p̂) ≥ (1− 2ǫ)ǫbi,
∑

j∈S,o

πjoxjo(p̂) ≤ (1− 3ǫ)bi
)

≤ ǫ.

Hence, with probability 1− ǫ, b̂i ≥ (1− 3ǫ)bi,∀i.
In that case, we argue that

∑

j,o πjoxjo(p̂) ≥ (1− 3ǫ)OPT . In fact, assuming x∗ is the optimal
solution to LP (6), then (1 − 3ǫ)x∗ is feasible to LP (8). As the optimal solution to LP (8), x̂(p̂)
is no worse than (1− 3ǫ)x∗, which concludes the lemma.

Note that the left hand side of (7) includes revenue from customers in Sǫ, which should be excluded.
It is upper bounded by OPTǫ, the optimal solution to LP (3).

Lemma 4. E[OPTǫ] ≤ ǫ ·OPT .

Proof. Note that the optimal dual solution (p∗,q∗) to (6) is also feasible to the partial dual prob-
lem (3). Hence, the optimal solution to (3): OPTǫ ≤ (1 − ǫ)ǫ

∑

i bip
∗
i +

∑

j∈S q
∗
j . By taking

expectation on both sides, we can conclude our lemma.

We are now ready to prove the main theorem.

Theorem 1. If mini bi ≥ 5m ln(nq/ǫ)/ǫ3, OLA is 1−O(ǫ) competitive.

Proof. From the lemmas above, with probability 1−2ǫ (denoted by E1), the solution x(p̂) is feasible
and

∑

j,o πjoxjo(p̂) ≥ (1− 3ǫ)OPT . Then,

E[
∑

j /∈Sǫ,o∈Oj
πjoxjo(p̂)] ≥ E[

∑

j /∈Sǫ,o∈Oj
πjoxjo(p̂)|E1] · Pr(E1)

≥ (E[
∑

j,o πjoxjo(p̂)|E1]− E[OPTǫ|E1]) Pr(E1)

≥ (1− 3ǫ)(1 − 2ǫ)OPT − ǫOPT ≥ (1− 6ǫ)OPT

3 Dynamic Pricing Algorithm

The basic idea of OLA is to compute dual prices for resources, based on customers who arrive early.
However, because of the limited number of customers, mini bi is required to be as large as O(1/ǫ3)
to have a small error probability. A natural question is if sampling more customers can help. The
answer is affirmative as showed in this section.
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Let ǫ = 2−E , where E ∈ N. Let Sl = {j : tj < F−1(l)} be the set of customers arriving no later
than F−1(l)(l ∈ L = {ǫ, 2ǫ, 4ǫ, ...}). Let p̂l denote the optimal dual solution to the following partial
LPs:

max
∑

j∈Sl,o∈Oj
πjoxjo

s.t.
∑

j∈Sl,o∈Oj
aijoxjo ≤ (1− hl)lbi, ∀i

∑

o∈Oj
xjo ≤ 1, ∀j ∈ Sl

xjo ≥ 0, ∀j ∈ Sl, o ∈ Oj

(9)

where hl = ǫ
√

1/l.
Unlike OLA, DPA updates dual prices multiple times to have better performance:

Algorithm 2 Dynamic Pricing Algorithm(DPA)

1: Reject all customers arriving earlier than ǫT .
2: Update dual prices p̂l at time ǫT, 2ǫT, 4ǫT, ...
3: Let xj = xj(p̂l) for customers arriving between lT and 2lT .

The analysis of DPA is very similar to the one of OLA. We show that with high probability,
the resulting solution is feasible, the resulting solution is near optimal, and the loss caused by
observation process is small. Because of the lack of space, proofs are omitted here and can be
found in the appendix.

Lemma 5. If mini bi ≥ 10m ln(nq/ǫ)/ǫ2, then w.p. 1− ǫ,
∑

j∈S2l\Sl,o∈Oj
aijoxjo(p̂l) ≤ lbi,∀i, l

Lemma 6. If mini bi ≥ 10m ln(nq/ǫ)/ǫ2, then w.p. 1 − ǫ,
∑

j∈S2l,o∈Oj
πjoxjo(p̂l) ≥ (1 − 2hl −

ǫ)OPT2l,∀l.

Lemma 7. Let OPTl be the optimal value to (9), then E[OPTl] ≤ l ·OPT .

Combining Lemma 5, 6, and 7, we conclude the main result:

Theorem 2. If mini bi ≥ 10m ln(nq/ǫ)/ǫ2, then DPA is 1−O(ǫ) competitive.

4 Learning From the Past

The previous two sections discuss problems where the distribution of customers’ arrival time is
known to the online algorithm ahead of time. However, the assumption may not be true in many
applications. Instead, the online algorithm is more likely to have access to past data rather than
the exact distribution. For example, from observation on previous days, a retail store owner may
expect that roughly two-thirds of the customers arrive in the afternoon. Specifically, in this section,
we assume customers have i.i.d. arrival time with unknown distribution. Furthermore, information
about the k past customers {t′k,a

′
k,π

′
k} is given to the online algorithm. The algorithm proposed

in this section only uses arrival times of past customers.
Intuitively, by concentration laws, the distribution f(·) can be estimated arbitrarily well point-

wise as k grows. However, point-wise accuracy is unnecessary for our algorithm, and requires a
huge amount of data. Note that, only at time F−1(ǫ), F−1(2ǫ), F−1(4ǫ), ... does DPA update its
pricing policy. Thus, if we could estimate those quantile points well, we would expect the resulting
algorithm has similar performance as DPA.

First, let us show that t′lk is a good estimate of F−1(l). To be more precise,

8



Lemma 8. If k ≥ 5 ln(1/ǫ)/ǫ2, w.p. 1 − ǫ, F−1((1 − hl)l) ≤ t′lk ≤ F−1((1 + hl)l),∀l ∈ L =
{ǫ, 2ǫ, 4ǫ, ...}. Here hl = ǫ

√

1/l.

Proof. Let N1
l be the number of customers arriving between [0, F−1((1− hl)l)]. Then,

Pr(N1
l ≥ lk) = Pr(N1

l − E[N1
l ] ≥ hllk) ≤ exp(−ǫ2k/2).

Let N2
l be the number of customers arriving between [0, F−1((1 + hl)l)]. Then,

Pr(N2
l ≤ lk) = Pr(N2

l − E[N1
l ] ≤ −hllk) ≤ exp(−ǫ2k/4).

Noting that N1
l ≥ lk is equivalent to t′lk ≥ F−1((1 − hl)l) and N2

l ≤ lk is equivalent to t′lk ≤
F−1((1 + hl)l). Therefore, by union bound, F−1((1 − hl)l) ≤ t′lk ≤ F−1((1 + hl)l),∀l = ǫ, 2ǫ, 4ǫ, ...
w.p. 1− 2 ln(1/ǫ) exp(−ǫ2k/4) ≥ 1− ǫ.

After obtaining estimates of F−1(l), let us present the online algorithm DPAD. The only difference
from DPA is that instead of updating at F−1(l), DPAD updates its pricing policy at t′lk.

Algorithm 3 Dynamic Pricing Algorithm with Data(DPAD)

1: Reject all customers arriving earlier than t′ǫk.
2: Update dual prices p̂l at time t′ǫk, t

′
2ǫk, t

′
4ǫk, ... according to LP (10) given below

3: Let xj = xj(p̂l) for customers arriving between t′lk and t′
2lk.

max
∑

j∈Sl,o∈Oj
πjoxjo

s.t.
∑

j∈Sl,o∈Oj
aijoxjo ≤ (1− 6hl)lbi, ∀i

∑

o∈Oj
xjo ≤ 1, ∀j ∈ Sl

xjo ≥ 0, ∀j ∈ Sl, o ∈ Oj

(10)

where hl = ǫ
√

1/l and Sl = {j : tj ≤ t′lk}.

Let event Eest denote the event where F
−1(ǫ), F−1(2ǫ), F−1(4ǫ), ... are well-estimated as in Lemma 8.

Given Eest, we would expect DPAD has many similar properties as DPA. Indeed, it is the case,
and the analysis is almost identical. We show that with high probability, the resulting solution is
feasible, the resulting solution is near optimal, and the loss due to observation is small.

Lemma 9. Given Eest, if mini bi ≥ 3m ln(nq/ǫ)/ǫ2, then with probability 1− ǫ,

∑

j∈S2l\Sl,o∈Oj

aijoxjo(p̂l) ≤ lbi,∀i, l.

Lemma 10. Given Eest, if mini bi ≥ 3m ln(nq/ǫ)/ǫ2, then with probability 1− ǫ,

∑

j∈S2l,o∈Oj

πjoxjo(p̂l) ≥ (1− 9hl − ǫ)OPT2l,∀l.

Lemma 11. Given Eest, E[OPTl] ≤ (1 + hl)l ·OPT .

From lemmas above, we can conclude:

Theorem 3. If mini bi ≥ 3m ln(nq/ǫ)/ǫ2 and k ≥ 5 ln ǫ/ǫ2, the algorithm is 1−O(ǫ) competitive.

9



The assumptions made in the theorem are reasonable. On the one hand, the lower bound on mini bi
is the same as in DPA, which has been showed to be best possible in many occasions. On the other
hand, the lower bound on k is even lower than the one on mini bi, which means only a limited
amount of past observations are required to obtained the near-optimal result.

DPAD does not take advantage of demands and prices information from past customers. In
the random permutation model, such information is unlikely to improve the online algorithm. But
for practical problems where demands and payments come from unknown i.i.d. distributions, these
data may provide good estimation on the distributions, and lead to better results.

5 Heterogeneous Customers

As we may see in many applications, customers are not all homogeneous. Customers with differ-
ent preference may have different arrival time. For instance, in the airline revenue management
problems, casual travelers, whose reserve prices are probably lower, usually arrive long before their
scheduled departure time; while business travelers, who tend to be price-insensitive, are more likely
to appear shortly before intended trips. In this section, we take this heterogeneity into account.

Assume all customers are categorized into K groups: N =
⋂K

k=1
Nk. Furthermore, we assume

there exists a constant c such that ∀k, k′, t, Fk(t) ≤ cFk′(t). Let t0 be the ǫ-quantile point, i.e.
F1(t0) = ǫ. Assume Fk(t0) = rkǫ. From the assumption on the CDFs, we have rk ∈ [1/c, c].

Let Sk be the set of customers from group k that arrive before t0. The online algorithm observes
customers arriving before t0 and solves the following LPs:

max
∑

k(rkǫ)
−1

∑o∈Oj

j∈Sk
πk
jox

k
jo

s.t.
∑

k(rkǫ)
−1

∑o∈Oj

j∈Sk
akijox

k
jo ≤ ǫ(1− ǫ)bi, ∀i

∑

o∈Oj
xkjo ≤ 1,∀j, k

x ≥ 0

min ǫ(1− ǫ)
∑

i bipi +
∑

j,k q
k
j

s.t. rkǫq
k
j +

∑

i a
k
ijopi ≥ πk

j ,∀j, o, k

p,q ≥ 0

(11)

Similar to arguments in the previous sections, We show that with high probability, the resulting
solution is feasible, the resulting solution is near optimal, and the loss due to observation is small:

Lemma 12. If mini bi ≥ 3cm ln(nq/ǫ)/ǫ3, then w.p. 1− ǫ,∀i,
∑

k

∑o∈Oj

j∈Nk
akijox

k
jo(p̂) ≤ bi.

Lemma 13. If mini bi ≥ 3cm ln(nq/ǫ)/ǫ3, then w.p. 1− ǫ,
∑

k

∑o∈Oj

j∈Nk
πk
jox

k
jo(p̂) ≥ (1− 3ǫ)OPT .

Lemma 14. E[
∑

k

∑o∈Oj

j∈Sk
πk
jox

k
jo] ≤ maxk rkǫOPT ≤ cǫOPT .

Combining the three lemmas above, we can conclude that:

Theorem 4. If mini bi ≥ 3cm ln(nq/ǫ)/ǫ3, the algorithm is 1−O(ǫ) competitive.

Unfortunately, dynamic pricing techniques used in DPA and DPAD do not apply for this problem,
because the arrival process is not homogeneous here. Without dynamic pricing mechanism, in order
to have near optimality result, the lower bound imposed on the model is much higher than the one
we obtained in the previous sections. Worth noting that, this approach can only deal with problems
where customers of each type are well represented in the early stages. Otherwise, we may need
additional assumptions of information to obtain good results. For example, consider airline tickets
sales, if all casual travelers arrive at least one week before departure and all business travelers only
appear one week within departure. If the numbers of travelers of the two types are unrelated,
then past information alone is unlikely to help us decide how many seats to reserve for business
customers. To find a proper reserve level, we need good estimates on the numbers of travelers of
the two types, which probably requires more assumptions.

10



A Proof of Lemma 1

Lemma 1. For non-degenerate j ∈ Sǫ, x̂jo = xjo(p̂) for all o ∈ Oj .

Proof. If there exists o ∈ Oj such that x̂jo > 0. From complementary slackness, we have
∑

i aijop̂i+
q̂j = πjo. Since ∀o′ ∈ Oj ,

πjo′ −
∑

i

aijo′ p̂i < q̂j = πjo −
∑

i

aijop̂i,

we have xjo(p̂) = 1 and q̂j > 0. Since j is non-degenerate, then q̂j > 0. Combined with complemen-
tary slackness, we have

∑

o′∈Oj
x̂jo′ = 1. Note that ∀o′ 6= o, x̂jo′ = 0 because πjo′ −

∑

i aijo′ p̂i < q̂j.

Hence, x̂jo = 1 = xjo(p̂).
If x̂jo = 0 for all o ∈ Oj , then q̂j = 0. Since πjo −

∑

i aijop̂i ≤ q̂j and j is non-degenerate,
πjo −

∑

i aijop̂i < 0. Therefore, xjo(p̂) = 0 for all o ∈ Oj .

B Omitted Proofs in Section 3

Lemma 5. If mini bi ≥ 10m ln(nq/ǫ)/ǫ2, then w.p. 1− ǫ,
∑

j∈S2l\Sl,o∈Oj
aijoxjo(p̂l) ≤ lbi,∀i, l

Proof. The proof is very similar to the one of Lemma 2. Let us first consider the probability of
event

{

o∈Oj
∑

j∈Sl

aijoxjo(pl) ≤ (1− hl)lbi,

o∈Oj
∑

j∈S2l\Sl

aijoxjo(pl) ≥ lbi} (12)

for all fixed l, pl, and i:

Pr(
∑

j∈Sl,o∈Oj
aijoxjo(pl) ≤ (1− hl)lbi,

∑

j∈S2l\Sl,o∈Oj
aijoxjo(pl) ≥ lbi)

≤ Pr(
∑

j∈Sl,o∈Oj
aijoxjo(pl) ≤ (1− hl)lbi,

∑

j∈S2l,o∈Oj
aijoxjo(pl) ≥ (2− hl)lbi)

+ Pr(
∑

j∈S2l\Sl,o∈Oj
aijoxjo(pl) ≥ lbi,

∑

j∈S2l,o∈Oj
aijoxjo(pl) ≤ (2− hl)lbi).

Note that Pr(j ∈ Sl|j ∈ S2l) = 1/2. From Bernstein inequalities, the first term is upper bounded
by exp(−ǫ2bi/10). Similarly, the second term is also upper bounded by exp(−ǫ2bi/10). Thus,

Pr(

o∈Oj
∑

j∈Sl

aijoxjo(pl) ≤ (1− hl)lbi,

o∈Oj
∑

j∈S2l\Sl

aijoxjo(pl) ≥ lbi) ≤ 2 exp(−ǫ2bi/10).

Note that for each l, there are at most (nq)m distinct pl regions. By union bounds, we have that
with probability ǫ, there exist i, l, and pl, such that (12) is true. On the other hand, from Lemma 1,

we have
∑

j∈Sl,o∈Oj
aijoxjo(p̂l) ≤

∑o∈Oj

j∈Sl
aijox̂jo ≤ (1 − hl)lbi. By letting pl = p̂l, we can conclude

our lemma.

Lemma 6. If mini bi ≥ 10m ln(nq/ǫ)/ǫ2, then w.p. 1 − ǫ,
∑

j∈S2l,o∈Oj
πjoxjo(p̂l) ≥ (1 − 2hl −

ǫ)OPT2l,∀l.

Proof. Let us consider the following LP:

max
∑

j∈S2l,o
πjoxjo

s.t.
∑

j∈S2l,o
aijoxjo ≤ b̂i, ∀i

∑

o∈Oj
xjo ≤ 1, ∀j ∈ S2l

xjo ≥ 0, ∀j ∈ S2l, o

, (13)

11



where b̂i =
∑

j∈S2l
aijoxjo(p̂l), if p̂l,i > 0 and b̂i = max{

∑

j∈2l aijoxjo(p̂l), bi}, if p̂l,i = 0. By
complementary slackness, x(p̂l) is the optimal solution to this LP.

On the other hand, using the same argument as in the proof of Lemma 3, we can show that
with probability 1 − ǫ, b̂i ≥ 2l · (1 − 2hl − ǫ)bi for all i and l. In that case,

∑

j∈S2l,o
πjoxjo(p̂l) ≥

(1− 2hl − ǫ)OPT2l.

Lemma 7. E[OPTl] ≤ l ·OPT .

Proof. Consider the optimal dual solution (p∗,q∗) to LP (1). We can easily check that it is feasible
to the dual problem of LP (9):

min
∑

i(1− hl)lǫbipi +
∑

j∈Sl
qj

s.t.
∑

i aijopi + qj ≥ πjo,∀j ∈ Sl, o ∈ Oj

pi ≥ 0,∀i
qj ≥ 0,∀j ∈ Sl

.

Thus, OPTl ≤ (1 − hl)l
∑

i bip
∗
i +

∑

j∈Sl
q∗j . Note that for every j, Pr(j ∈ Sl) = l. By taking

expectation on both sides, we can conclude the lemma.

Theorem 2. If mini bi ≥ 10m ln(nq/ǫ)/ǫ2, then DPA is 1−O(ǫ) competitive.

Proof. Let E2 denote the event that both inequalities in Lemma 5 and 6 are true, then Pr(E2) ≥
1− 2ǫ.

E[
∑

l∈L

∑

j∈S2l\Sl

πjxj(p̂l)|E2]

≥
∑

l∈L

E[
∑

j∈S2l

πjxj(p̂l)|E2]−
∑

l∈L

E[
∑

j∈Sl

πjxj(p̂l)|E2]

≥
∑

l∈L

(1− 2hl − ǫ)E[OPT2l|E2]−
∑

l∈L

E[OPTl|E2]

≥ OPT −
∑

l∈L

2hlE[OPT2l|E2]− ǫ
∑

l∈L

E[OPT2l|E2]− E[OPTǫ|E2]

≥ OPT − 4
∑

l∈L

hll ·OPT − 2ǫ
∑

l∈L

l ·OPT − ǫOPT

≥ OPT − 13ǫOPT

.

Therefore, E[
∑

l∈L

∑

j∈S2l\Sl
πjxj(p̂l)] ≥ (1− 15ǫ)OPT .

C Omitted Proofs in Section 4

Lemma 9. Given Eest, if mini bi ≥ 3m ln(nq/ǫ)/ǫ2, then with probability 1− ǫ,

∑

j∈S2l\Sl,o∈Oj

aijoxjo(p̂l) ≤ lbi,∀i, l.

Proof. Fix p̂, i, and l. Let Xj =
∑

o∈Oj
aijoxjo(p̂). Then,

Pr(
∑

j∈S2l\Sl

Xj > lbi,
∑

j∈Sl

Xj ≤ (1− 6hl)lbi)

≤ Pr(
∑

j∈Sl

Xj ≤ (1− 6hl)lbi,
∑

j∈S2l

Xj ≥ 2(1 − 3hl)lbi)

+Pr(
∑

j∈S2l\Sl

Xj ≥ lbi,
∑

j∈S2l

Xj ≤ 2(1− 3hl)lbi)

.

12



Since Pr(j ∈ Sl|j ∈ S2l) = F (t′lk)/F (t′
2lk) ≤ (1 + 2hl)/2, the first term

Pr(
∑

j∈Sl

Xj ≤ (1− 6hl)lbi,
∑

j∈S2l

Xj ≥ 2(1− 3hl)lbi)

≤ Pr(
∑

j∈Sl

Xj − E[
∑

j∈Sl

Xj ] ≤ min{−hl
∑

j∈S2l

Xj/2,−hllbi},
∑

j∈S2l

Xj ≥ 2(1 − 3hl)lbi)

≤ exp(−ǫ2bi/3)

.

Since Pr(j ∈ S2l\Sl|j ∈ S2l) = 1− Pr(j ∈ Sl|j ∈ S2l) ≥ (1− 2hl)/2, the second term

Pr(
∑

j∈S2l\Sl

Xj ≥ lbi,
∑

j∈S2l

Xj ≤ 2(1 − 3hl)lbi)

≤ Pr(
∑

j∈S2l\Sl

Xj − E[
∑

j∈S2l\Sl

Xj ] ≥ hllbi,
∑

j∈S2l

Xj ≤ 2(1 − 3hl)lbi)

≤ exp(−ǫ2bi/3)

.

Therefore, Pr(
∑

j∈S2l\Sl
Xj > lbi,

∑

j∈Sl
Xj ≤ (1 − 6hl)lbi) ≤ 2 exp(−ǫ2bi/3). By taking union

bounds over all possible pl, i, and l, we can conclude the lemma.

Lemma 10. Given Eest, if mini bi ≥ 3m ln(nq/ǫ)/ǫ2, then with probability 1− ǫ,

∑

j∈S2l,o∈Oj

πjoxjo(p̂l) ≥ (1− 9hl − ǫ)OPT2l,∀l.

Proof. Let us consider the following LP:

max
∑

j∈S2l,o
πjoxjo

s.t.
∑

j∈S2l,o
aijoxjo ≤ b̂i, ∀i

∑

o∈Oj
xjo ≤ 1, ∀j ∈ S2l

xjo ≥ 0, ∀j ∈ S2l, o

, (14)

where b̂i =
∑

j∈S2l
aijoxjo(p̂l), if p̂l,i > 0 and b̂i = max{

∑

j∈2l aijoxjo(p̂l), bi}, if p̂l,i = 0. By
complementary slackness, x(p̂l) is the optimal solution to this LP.

On the other hand, using the same argument as in the proof of Lemma 3, we can show that
with probability 1− ǫ, b̂i ≥ 2l · (1−9hl − ǫ)bi for all i and l. In that case, then

∑

j∈S2l,o
πjoxjo(p̂l) ≥

(1− 9hl − ǫ)OPT2l.

Lemma 11. Given Eest, E[OPTl] ≤ (1 + hl)l ·OPT .

Proof. Consider the optimal dual solution (p∗,q∗) to LP (1). We can easily check that it is feasible
to the partial dual problem (9)

min
∑

i(1− 6hl)lǫbipi +
∑

j∈Sl
qj

s.t.
∑

i aijopi + qj ≥ πjo, ∀j ∈ Sl, o ∈ Oj

pi ≥ 0,∀i
qj ≥ 0,∀j ∈ Sl

.

Thus, OPTl ≤ (1−6hl)l
∑

i bip
∗
i +

∑

j∈Sl
q∗j . Note that given Eest, for every j, Pr(j ∈ Sl) ≤ (1+hl)l.

By taking expectation on both sides, we can conclude the lemma.

Theorem 3. If mini bi ≥ 3m ln(nq/ǫ)/ǫ2 and k ≥ 5 ln ǫ/ǫ2, the algorithm is 1−O(ǫ) competitive.

13



Proof. Let E3 denote the event that both inequalities in Lemma 9 and 10 are true, then Pr(E3 ∩
Eest) ≥ 1− 3ǫ.

E[
∑

l∈L

∑

j∈S2l\Sl

πjxj(p̂l)|E3 ∩ Eest]

≥
∑

l∈L

E[
∑

j∈S2l

πjxj(p̂l)|E3 ∩ Eest]−
∑

l∈L

E[
∑

j∈Sl

πjxj(p̂l)|E3 ∩ Eest]

≥
∑

l∈L

(1− 9hl − ǫ)E[OPT2l|E3 ∩ Eest]−
∑

l∈L

E[OPTl|E3 ∩ Eest]

≥ OPT −
∑

l∈L

9hlE[OPT2l|E3 ∩ Eest]− ǫ
∑

l∈L

E[OPT2l|E3 ∩ Eest]− E[OPTǫ|E3 ∩ Eest]

≥ OPT − 9
∑

l∈L

(2hll + hlh2ll) ·OPT − ǫ
∑

l∈L

4l ·OPT − 2ǫOPT

≥ OPT − 42ǫOPT

.

Therefore, E[
∑

l∈L

∑

j∈S2l\Sl
πjxj(p̂l)] ≥ (1− 45ǫ)OPT .

D Omitted Proofs in Section 5

Lemma 12. If mini bi ≥ 3cm ln(nq/ǫ)/ǫ3, then w.p. 1− ǫ,∀i,
∑

k

∑o∈Oj

j∈Nk
akijox

k
jo(p̂) ≤ bi.

Proof. The proof is very similar to the one of Lemma 2. Let us first consider the probability of the
event

{
∑

k

(rkǫ)
−1

o∈Oj
∑

j∈Sk

akijox
k
jo(p) ≤ ǫ(1− ǫ)bi,

∑

k

o∈Oj
∑

j∈Nk

akijox
k
jo(p) ≥ bi} (15)

for all fixed p and i. Since Pr(j ∈ Sk|j ∈ Nk) = rkǫ, we expect
∑

k(rkǫ)
−1

∑o∈Oj

j∈Sk
akijox

k
jo close to

its mean
∑

k

∑o∈Oj

j∈Nk
akijox

k
jo. Therefore, event (15) should be a rare event. More precisely,

Pr(
∑

k

(rkǫ)
−1

o∈Oj
∑

j∈Sk

akijox
k
jo(p) ≤ ǫ(1− ǫ)bi,

∑

k

o∈Oj
∑

j∈Nk

akijox
k
jo(p) ≥ bi) ≤ exp(−ǫ3bi/3c).

Note that there are at most (nq)m distinct p. By taking union bounds over all distinct p and i, we
can conclude the lemma.

Lemma 13. If mini bi ≥ 3cm ln(nq/ǫ)/ǫ3, then w.p. 1− ǫ,
∑

k

∑o∈Oj

j∈Nk
πk
jox

k
jo(p̂) ≥ (1− 3ǫ)OPT .

Proof. Let us consider the following LP:

max
∑

k

∑o∈Oj

j∈Nk
πk
jox

k
jo

s.t.
∑

k

∑o∈Oj

j∈Nk
akijox

k
jo ≤ b̂i, ∀i

∑

o∈Oj
xkjo ≤ 1, ∀j, k

xkjo ≥ 0, ∀j, k, o

, (16)

where b̂i =
∑

k

∑o∈Oj

j∈Nk
akijox

k
jo(p̂), if p̂i > 0 and b̂i = max{

∑

k

∑o∈Oj

j∈Nk
akijox

k
jo(p̂), bi}, if p̂i = 0. By

complementary slackness, x(p̂) is the optimal solution to this LP.
On the other hand, using the same argument as in the proof of Lemma 2, we can show that with

probability 1−ǫ, b̂i ≥ (1−3ǫ)bi for all i and l. If such an event happens, then
∑

k

∑o∈Oj

j∈Nk
πk
jox

k
jo(p̂) ≥

(1− 3ǫ)OPT .
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Lemma 14. E[
∑

k

∑o∈Oj

j∈Sk
πk
jox

k
jo] ≤ maxk rkǫOPT ≤ cǫOPT .

Proof. Let OPTǫ be the optimal value to the partial LP (11). Let (p∗,q∗) be the optimal dual
solution to the complete LP (16). It is easy to check that (p∗,q∗) is a dual feasible solution to (11).
Therefore, E[OPTǫ] ≤ OPT .

On the other hand, for any realization, the lost revenue resulting from the first ǫ fraction
customers is no more than OPT1. Hence,

E[
∑

k

o∈Oj
∑

j∈Sk

πk
jox

k
jo] ≤ E[max

k
rkǫ ·OPTǫ] ≤ max

k
rkǫ · OPT.

Theorem 4. If mini bi ≥ 3cm ln(nq/ǫ)/ǫ3, the algorithm is 1−O(ǫ) competitive.

Proof. Let E4 denote the event that for all i

∑

k

o∈Oj
∑

j∈Nk

akijox
k
jo(p̂) ≤ bi

and
∑

k

o∈Oj
∑

j∈Nk

πk
jox

k
jo(p̂) ≥ (1− 3ǫ)OPT.

Then, from Lemma 12 and 13, we have Pr(E4) ≤ 1 − 2ǫ. Given E , the online solution x(p̂) is
feasible. Therefore,

E[
∑

k

∑o∈Oj

j /∈Sk
akijox

k
jo(p̂)] ≥ E[

∑

k

∑o∈Oj

j /∈Sk
akijox

k
jo(p̂)|E4]·Pr(E4)

≥ (E[
∑

k

∑o∈Oj

j∈Nk
akijox

k
jo(p̂)|E4]−E[

∑

k

∑o∈Oj

j∈Sk
πk
jox

k
jo|E4])·Pr(E4)

≥ (1− 3ǫ)(1 − 2ǫ)OPT − cǫOPT
≥ (1−O(ǫ))OPT
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