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Inference of recombination breakpoints using STARRInIGHTS 
B. Jesse Shapiro 
jesse1@mit.edu 
 
Based on methods described in “Population Genomics of Early Events in the Ecological 
Differentiation of Bacteria” by B. Jesse Shapiro, Jonathan Friedman, Otto X. Cordero, Sarah P. 
Preheim, Sonia C. Timberlake, Gitta Szabó, Martin F. Polz, Eric J. Alm. 
 

Strain-based Tree Analysis and Recombinant Region Inference In Genomes from 
High-Throughput Sequencing-projects (STARRInIGHTS; software and documentation 
available at http://almlab.mit.edu/star/) combines aspects of the two major classes of 
methods to detect homologous recombination events in microbial genomes: ‘substitution 
distribution methods’ (e.g. ClonalFrame (1) ) and ‘phylogenetic methods’ (e.g. (2, 3) ). 
Like substitution distribution methods, STARRInIGHTS allows the mutation rate to vary 
along the genome, allowing for the detection of recombination events that import a large 
number of substitutions simultaneously into a stretch of the genome. Like phylogenetic 
methods, STARRInIGHTS also explicitly models the tree topology separately for 
different parts of the genome, allowing for detection of recombination events that change 
the tree topology without necessarily importing a large number of new substitutions. 

 
The input to STARRInIGHTS is an aligned contig (or set of contigs) of genomic 

sequences, from which recombination breakpoints and relative rates of mutation and 
recombination are inferred. This also enables estimation of recombination events using 
phylogenetically informative single nucleotide polymorphisms (SNPs) in the aligned 
contigs – in this case, the ‘core’ genome described above. We propose that the core 
genome, consisting of G contigs each of length LG bp, can be divided into B+1 blocks 
divided by B recombination breakpoints. Due to recombination between blocks, each 
block may have its own phylogeny and substitution rates (branch lengths). We assume 
each block has evolved according to its maximum-likelihood (ML) phylogeny. ML trees 
were inferred using phyML v. 2.4.5 (4) with a JC69 substitution model, a BIONJ starting 
tree, and two gamma-distributed evolutionary rate categories. The gamma distribution 
shape parameter was set to 0.03 for Vibrio data from a forthcoming manuscript (also 0.03 
for Salmonella enterica serovar Typhi), the median value estimated by phyML in 5 kb 
windows along the core genome (the window size was varied from 500 bp to 20 kb 
without affecting the estimate). An example of the STARRInIGHTS procedure is shown 
in fig. S8. Due to the high sequencing coverage, we do not expect a considerable amount 
of sequencing error. Any remaining errors are not expected to introduce spurious 
breakpoints but rather to be accounted for by an increased local mutation rate. The only 
way that sequence errors could cause spurious breakpoints is if they introduced spatially 
clustered groups of polymorphisms all supporting a single phylogeny, an unlikely 
scenario to occur by chance. 

 
To find the optimal number of breakpoints (B) and their locations in the genome, we 

define a cost function C, where both mutation events (on an ML tree within a block) and 
recombination breakpoints between blocks contribute to the cost incurred by a stretch of 
DNA from base i to base j (i ≤ j). 
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€ 

C(i, j) = cb ⋅ bij
         +  cnb ⋅ (lij − bij )
         +  cTree(i, j )        Equation 1 
 
where lij is the length, in base pairs, from i to j, cb is the per-site cost of adding a 

breakpoint, cnb is the cost for not adding a breakpoint, bij is the number of breakpoints 
between i and j, and cTree(i,j) is the cost of the ML tree topology and branch lengths 
(mutation events) estimated for the alignment between i and j. The costs are in fact 
negative log probabilities: 

 

€ 

cb         = −logP(b)
cnb        = −log(1− P(b))
cTree(i, j ) = −logP(τ,ν,θ | Ai, j )      Equations 2a-d 
 
where P(b) is the probability of a breakpoint and P(𝜏,𝜈,θ|Ai,j)  is the probability, 

estimated by phyML, of the tree topology 𝜏, branch lengths 𝜈 and substitution model θ 
given the alignment A from i to j. Note that breakpoints can separate blocks with 
arbitrarily different tree topologies, requiring at least one recombination event, but 
potentially more. The number of inferred recombination events is therefore a lower 
bound. 

 
We then minimize C over the whole genome using the dynamic programming 

recursion: 
 

€ 

M j = min Mi−1 + C(i, j)( )
                 {i, j; 1≤ i ≤ j}       Equation 3 
 
where Mj is the minimum cost for the first j bp, and setting M0 = 0. 
 
The number of breakpoints (B) and their locations will depend on the value of P(b). 

The probability of a breakpoint, P(b), is estimated from the data using expectation 
maximization (E-M) (5). The E-M steps are as follows: 

 
1. Initialize P(b) with a value between 0 and 0.5. (In practice, try 10 different values 

and check for convergence). 
2. Using the current value of P(b), solve for the optimal number and location of 

breakpoints using dynamic programming. 
3. Compute the log likelihood of observing all SNPs in all G contigs of the genome: 
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logL = logP(b) ⋅Bg
g=1

G

∑

               +log(1−P(b)) ⋅ (Lg −Bg )

               + logP(τ k,ν k,θ | Ak )
k=1

Bg+1

∑
     Equation 4 

 
where Lg is the length in bp of contig g, Bg is the number of inferred breakpoints and 

Bg+1 the number of blocks in contig g, and 𝜏k, 𝜈k and Ak are respectively the ML tree 
topology, branch lengths and alignment within block k. 

 
4. Update the value of P(b) such that: 
 

€ 

P(b) =
Bg

Lgg=1

G

∑
        Equation 5 

 
5. Iterate through steps 2-4 using the updated value of P(b) and continuing until 

convergence: log Lt – log L t-1 ≈ 0, where t is the number of iterations. 
 

Correction for model complexity. 
To avoid inference of spurious breakpoints by STARRInIGHTS, we introduced a 

correction for model complexity. Every time a new breakpoint is included, a new tree 
topology and branch lengths are added as additional parameters to the model. Unless this 
is corrected for, many false breakpoints might be added in order to increase the likelihood 
of the model. For example, consider a hypothetical subsequence of 100 bp containing 10 
phylogenetically-informative SNPs. For simplicity, assume that all 10 SNPs support the 
exact same tree topology, partitioning the isolates into two groups. If by chance 5 of the 
SNPs fell within the first 40 bp and the other 5 SNPs in the last 60 bp, the likeliest model 
might result in two blocks, each supporting the same tree topology, but with a longer 
branch length in the 40 bp block (5 SNPs / 40 bp 

€ 

≈ 0.125 subs/site) than the 60 bp block 
(4 SNPs / 60 bp 

€ 

≈ 0.067 subs/site). To quantify the contribution of this effect, we 
simulated sequences ranging in length from l = 10 bp to l = 211 kb (in binned increments 
each spanning ~10% of the observed core genome subsequences), and ranging in 
mutation rate from λ = 0.001 to λ = 1, where λ is the number of SNPs per site. For each 
combination of λ and l we simulated 100 sequences using seq-gen (6) with a tree chosen 
at random from the distribution of trees observed across subsequences of the core 
genome, and estimated the likelihood of a model with no breakpoints (L0) and a model 
with exactly one breakpoint (L1), placed optimally in the sequence to maximize the 
likelihood. Note that sequences were simulated using a single tree, so breakpoints 
introduced in the L1 model are necessarily due to increased model complexity rather than 
actual recombination events. The maximum values of the log (L1/L0) ratio observed in 
100 simulated contigs for each combination of l and λ are used as an empirical correction 
for model complexity. STARRInIGHTS was modified to include an appropriate 
correction factor for the values of l and λ in the subsequence being considered, and we 
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again benchmarked on contigs simulated under Scenarios A and B. The correction for 
model complexity was accomplished by adding a penalty, pen(i,j) = log (L1/L0)λ*,l*, to 
the cost function C(i,j) from Equation 1, where log (L1/L0)λ*,l* is the observed maximum 
log ratio from 100 simulations with a given λ = λ* and l = l*. In this notation,  λ* and l* 
are the discrete, percentile-incremented parameter values used in the simulations that 
most closely match the observed λ(k,j) and l(k,j), where k = traceback(i) and the 
subsequence (k,j) consists of two flanking breakpoints at k and j, with a third breakpoint 
in between at i. By adding the appropriate penalty, we are correcting for the probability 
that the breakpoint at i due to model overfitting (e.g. due to the effect described in the 
hypothetical subsequence of 100 bp with unevenly distributed SNPs).  

 
iv. Benchmarking on simulated and real sequence data  

We tested the sensitivity and specificity of breakpoint detection by applying 
STARRInIGHTS to simulated contig sequences with predetermined recombination 
events. Simulated contig sequences of length 2500 bp (representative of the median LCB 
length in our data) were generated using simMLST (7), using the default population 
model, a recombination tract length of 236 bp, with mutation rate (theta) of 5, 10 or 25, 
recombination rate (rho) of 0, 1, 10 or 25, and a sample of 8, 16 or 24 genomes. Mutation 
rates of 5, 10, and 25 resulted in 0.5-0.8%, 1-1.7%, and 2.6-4% polymorphic sites, 
respectively, and should correspond well with expected levels of ‘within-species’ 
diversity. The true-positive rate (TPR) for each parameter combination was computed as 
the number of inferred breakpoints divided by the number of actual breakpoints in the 
simulated ancestral recombination graph (ARG). Any breakpoints inferred in simulations 
with rho = 0 (no true recombination) were counted as false-positives, as were any 
additional breakpoints beyond those present in the ARG. These counts were divided by 
the number of sites with no true breakpoint to compute the false positive rate (FPR). 
True- and false-positive rates for each parameter combination (averages across 10 
replicate simulations) are shown in fig. S9  

 
The results of these simulations show that STARRInIGHTS is generally quite 

conservative, with zero false-positives for mutation rates below 25. The correction for 
model complexity (fig. S9B) reduces the TPR by ~1.3-5X, but improves the FPR to near 
zero for most parameter combinations.  STARRInIGHTS is less sensitive than 
ClonalOrigin (8) in inferring true breakpoints, but also suffers slightly fewer false-
positives. As an additional negative control, we examined 19 closely related S. enterica 
serovar Typhi genomes, previously reported to be largely clonal (9), and found no 
evidence of recombination (Table S3). 

 
Pre-filtering for regions of phylogenetic incongruence 

The cost functions and dynamic programming described above rely on ML trees for 
each possible subsequence (i,j) of the genome. This requires precomputing a large 
number (~L2) of trees. Specifically, N(T), the number of ML trees to be inferred is: 

 

€ 

N(T) =
Lg ⋅ (Lg -1)

2g=1

G

∑
       Equation 6 
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where Lg is the length in bp of contig g , and there are G contigs in the core genome. 
To reduce the computational burden of building ~O(L2) ML trees, we perform a pre-
filtering step to avoid building trees for subsequences (i,j) that almost certainly contain at 
least one breakpoint. To search for these clear cases of phylogenetic incongruence, we 
slide a 150 bp window along the sequence of informative SNPs and calculate, for each 
window, the probability that the SNPs on the left side and the right side of the window 
come from the same distribution. This is done by registering the frequency of the 
different SNPs observed in the window in a n-row, 2-column contingency table, where n 
is the number of different SNPs observed in the window and the columns correspond to 
the left and right sides of the window. We can then use a χ2 test to calculate the 
significance that the observed SNPs are unevenly distributed over the window. This gives 
us a statistical criterion to split the alignment into smaller blocks tractable by the 
downstream dynamic-programming algorithm.  

 
In addition, we distinguish cases of significant unevenness caused by incongruent 

phylogenetic topologies from those caused by long branch lengths, by explicitly 
measuring the average percentage of conflicting SNPs between all pairs of topologies 
found in the window: 

 

€ 

F dis =  <
min(SNPT1,SNPT 2) − SNPT1∩T 2

SNPT1 + SNPT 2 − SNPT1∩T 2

>
    Equation 7 

 
where SNPT1, SNPT2 and SNPT1∩T2 are the number of SNPs supporting topologies 

T1, T2 or both T1 and T2. The average in Equation 7 runs over all pairs of topologies 
found in the window.  

 
For the Vibrio analysis presented in the main text, we split the alignment in smaller 

blocks at all positions with chi-square p-value < 1e-6 (corresponding to ~1 false positive 
breakpoint inserted every 1 million informative SNPs, or < 1 expected false positives in 
the 70,038 informative SNPs in the core genome) and a Fdis of at least 15% discordance 
between topologies (an example of the phylogenetic incongruence filtering procedure is 
shown in fig. S10). No pre-filtering step was applied to the S. enterica serovar Typhi 
genomes. 
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3. Define a cost function for 
recomb. breakpoints (b) and 
trees in intervening sequences.

LG1

.

.

.

1. Consider all subsequences of 
the core genome (~L2).

x

x

x

x

GATCCCGAGA

GATCCCTAGA

GATCGAGAGA

ATTCGAGCGC

ATTCGATCGC

CTCAACT

CTGAACT

GTGCTCT

GCCCTCT

CTCCACA

2. Each subsequence gets an 
ML tree.

x = homoplasic / unparsimonious site

x     x           x x      x         x x  x{ {subseq 1 subseq 2

e.g. 1. combine 2 subseqs with a breakpoint in between:

x

x

-log probabilities

# events
(breakpoint 

or not)C(1,LG) = cb(1) + cnb(LG-1) + cTree 1 + cTree 2

x x  x x

C(1,LG) = cb(3) + cnb(LG-3) + cTree1 + cTree2 + cTree3  

+ cTree4

e.g. 2. combine 4 subseqs with 3 breakpoints in between: 4. Find optimal breakpoint 
locations by dynamic 
programming (DP). 
Estimate cb by Expectation-
Maximization.

~LG
2 subseqs.

... consider further e.g.’s and choose the best by DP

! 

C(i, j) = c
b
" b

ij

         +  cnb " (lij # bij )

         +  cTree(i, j )

 

 

 

Figure S8. Example STARRInIGHTS calculations and workflow. 
See methods for a detailed description. 
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Fig. S9. STARRInIGHTS and ClonalOrigin benchmarked on simulated sequence. 
True positive rate (TPR) and false positive rate (FPR) for recombination breakpoint 

inference in 2500 bp simulated core genome blocks. Simulations were performed as 
described in Methods. Points represent the mean of 10 replicate simulations for each 
combination of parameters recombination rate ρ, mutation rate θ, and the number of 
sampled strains. (A) uncorrected STARRInIGHTS, and (B) corrected for model 
complexity. ClonalOrigin (CO) was also used to infer breakpoints, as described in 
Methods. 
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Fig. S10. Example phylogenetic incongruence filter. 
The phylogenetic discordance metric, described in Methods, is plotted in the upper panel 
(proportion of incongruent SNPs). The red line corresponds to the expected value in a 
randomized alignment and the dashed red line is the same value minus the standard 
deviation. The middle panel displays informative, dimorphic SNPs in 8 strains (e.g. 
strains with the same base shown in white; strains with the alternative base shown in 
blue) for part of the core genome. The bottom panel shows the χ2 p-value for stretches of 
significantly discordant SNPs. The yellow highlighted regions show significantly 
discordant stretches in which at least one breakpoint must be present (discordance metric 
> 0.15 and p < 1e-6). The contig (or LCB) is broken in these stretches such that four 
different, partially overlapping subcontigs are considered in the downstream 
STARRInIGHTS algorithm (horizontal black lines in lower panel). Within each 
subcontig, all subsequences (i,j) are used to build ML trees and infer further breakpoints. 
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Table S3. Recombination, polymorphism and divergence time estimates in Vibrio 
and Salmonella population genomes. 
All values and parameters were inferred using STARRInIGHTS, setting the breakpoint 
probability using E-M or the ‘strict’ requirement of near-zero expected false-positive 
breakpoints (Methods). Genome size refers to the aligned ‘core’ only. Polymorphic sites 
are defined as either phylogenetically informative or not. (e.g. a SNP present in just a 
single terminal leaf is not informative). Homoplasic sites were counted with respect to the 
maximum parsimony tree for each block. 
 

Ingroup genomes Polymorphic sites method to Recombination # homoplasic

organism # size (Mbp) informative non-inform. set P(Break) log P(Break) # breakpoints sites

V. cyclotrophicus 20 3.54 70,038 40,974 E-M -6.49 5,398 2,003

strict -14.10 3,550 3,545

S. enterica 19 5.81 473 1,313 E-M -15.38 0 13  
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